Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles

Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles
Much has been written about why electronic health (eHealth) initiatives fail. Less attention has been paid to why evaluations of such initiatives fail to deliver the insights expected of them. PLoS Medicine has published three papers offering a "robust" and "scientific" approach to eHealth evaluation. One recommended systematically addressing each part of a "chain of reasoning", at the centre of which was the program's goals. Another proposed a quasi-experimental step-wedge design, in which late adopters of eHealth innovations serve as controls for early adopters. Interestingly, the authors of the empirical study flagged by these authors as an exemplary illustration of the step-wedge design subsequently abandoned it in favour of a largely qualitative case study because they found it impossible to establish anything approaching a controlled experiment in the study's complex, dynamic, and heavily politicised context.

The approach to evaluation presented in the previous PLoS Medicine series rests on a set of assumptions that philosophers of science call "positivist": that there is an external reality that can be objectively measured; that phenomena such as "project goals", "outcomes", and "formative feedback" can be precisely and unambiguously defined; that facts and values are clearly distinguishable; and that generalisable statements about the relationship between input and output variables are possible.

Read on-line: Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles

Download from eHealthNews.eu Portal's mirror: Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles (.pdf, 99 KB).

Citation: Greenhalgh T, Russell J (2010) Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles. PLoS Med 7(11): e1000360. doi:10.1371/journal.pmed.1000360

Copyright: © 2010 Greenhalgh, Russell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...