Wearable Sensors and Digital Platforms in Health

The JRC project on Trust in Digital Interactions (TRUDI) deals with the construction and renewal of confident and trusted relationships among institutions, corporations and citizens, addressed as a major and urgent issue to be solved. The present report examines relationships for nurturing trust between corporations and citizens. In this context the JRC investigated wearable sensors and digital platforms in health as an empirical case study of citizens' involvement in designing the values embedded in information systems and services as well as their implementation and management.

Personal wearable sensors could become the most powerful individual self-surveillance technology available to citizens. These ubiquitous, networked devices currently offer a breadth of capabilities to sense, digitally enhance and upload data of fine granularity such as body and health physiological functions, images, locations, sounds and motion. However, for wider adoption, it is crucial for citizens/end-users to rely on trusted and trustworthy implementations of wearable sensing technologies. Trusted systems are defined as systems functioning normally and delivering what it is promised and what the user expects, whereas trustworthiness is mostly objectively defined according to specific criteria and can be considered a metric for how much a system deserve the trust of its users (Kounelis et al. 2014). Therefore, in order to establish criteria for trust and trustworthiness, the present report aims to screen and analyse emerging solutions and architectures for verifying how these systems actually work; particularly, for checking whether functionalities, motivations and values embedded in their design hold the potential for user empowerment, equitable use and meaningful community participation in digital health platforms.

Download: Wearable Sensors and Digital Platforms in Health (.pdf, 11.223 KB).

Download from eHealthNews.eu: Wearable Sensors and Digital Platforms in Health (.pdf, 11.223 KB).

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...