IBM's Biomedical Analytics Platform Helps Doctors Personalize Treatment

IBMIBM (NYSE: IBM) has developed a unique new biomedical analytics platform for personalized medicine that will enable doctors to better advise on the best course of medical treatment. This will lead to smarter and more personalized healthcare in a wide-range of areas, including cancer management, hypertension, and AIDS care.

IBM Research scientists are collaborating with the Fondazione IRCCS Istituto Nazionale dei Tumori, a major research and treatment cancer center in Italy, on the new decision support solution which will be tested by the Institute's physicians to personalize treatment based on automated interpretation of pathology guidelines and intelligence from a number of past clinical cases, documented in the hospital information system.

Selecting the most effective treatment can depend on a vast number of characteristics including genetic profile, age, weight, family history, current state of the disease, or general health. As a result, more informed and personalized decisions are needed to provide more accurate and safe care.

IBM's latest healthcare analytics solution, Clinical Genomics (Cli-G), can integrate and analyze all available clinical knowledge and guidelines, and correlate it with available patient data to create evidence that supports a specific course of treatment for each patient. Developed by researchers in Haifa, Israel, the new research prototype works by investigating the patient's personal makeup and disease profile, and combines this with insight from the analysis of past cases and clinical guidelines. The solution is expected to provide physicians and administrators with a better picture of the patient-care process and reduce costs by helping clinicians choose more effective treatment options.

"Making decisions in today's complex environment requires computerized methods that can analyze the vast amounts of patient information available to ease clinical decision-making," notes Dr Marco A. Pierotti, Scientific Director at the Istituto Nazionale dei Tumori. "By providing our physicians with vital input on what worked best for patients with similar clinical characteristics, we can help improve treatment effectiveness and the final patient outcome."

Founded in 1925, the Fondazione IRCCS Istituto Nazionale dei Tumori in Milan is recognized as a scientific research and treatment institution in the field of pre-clinical and clinical oncology. The Institute's special status as a research center enables it to transfer research results directly to clinical care. The Institute initiated this collaboration with IBM to enhance patient care through better use of innovative IT solutions. Once physicians make a diagnosis, they will receive personalized recommendations for their patients, based on medical information, automated interpretation of pathology clinical guidelines, and intelligence from a number of past clinical cases, documented in the hospital information system.

In addition to supporting decision-making about treatment, it can provide administrators at Fondazione IRCCS Istituto Nazionale dei Tumori with an aggregated view of patient care, enabling them to evaluate performances and using this knowledge to streamline processes for maximum safety. For example, hospital administrators can drill down into the data to better understand what the guidelines were for recommendations, what succeeded, and whether treatment quality has improved.

"Our clinical genomics solution will enable care-givers to better personalize treatment and increase its chances of success," explains Haim Nelken, senior manager of integration technologies at IBM Research - Haifa. "The solution provides physicians with recommendations that go beyond the results of clinical trials. It allows them to go deeper into the data and more accurately follow the reasoning that led to choices previously made on the basis of subjective memory, intuition, or clinical trial results."

One interesting example of insight highlighted by the solution in work with other organizations showed that, statistically, physicians tend to give more aggressive medical therapy treatment to women who are sick as opposed to men with the same problem. Another analysis brought to light that geriatric patients often do better with no treatment for certain diseases.

Any patient data securely collected from hospitals and health organizations is 'de-identified' or made anonymous through the removal of personal identifying details. The IBM system does not have to know which individuals the information came from in order to draw conclusions. It works by identifying similar cases based on age, sex, symptoms, diagnosis, or other related factors.

This solution is just one example of how IBM researchers are helping transform the healthcare industry by creating analytics technologies that will simplify the complex interactions in the healthcare delivery process while optimizing outcomes, ultimately helping to make patient care smarter and lower costs. In addition to cancer and AIDS, this solution can be adapted to support evidence-based treatment for any disease with complex genetic variants and a variety of treatment options. The solution aims to improve the care process by adapting the available treatment to a specific individual, avoiding delays of treatment delivery, and improving outcomes for various diseases. IBM Clinical Genomics uses some of the same natural language processing and machine learning capabilities as IBM Watson, but the clinical genomics platform has unique capabilities that are complimentary to the deep question and answering abilities of IBM Watson for healthcare.

Related news articles:

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...