2007 - a special anniversary year for Dräger

Drägerwerk AG100 years ago in October 1907, company founder, Johann Heinrich Dräger, was awarded a patent for the Pulmotor, the first mobile short-term respirator. This marked the birth of ventilation technology development at Dräger. Simple, reliable, and extremely effective, the apparatus - transported in a wooden casket - quickly became a standard piece of equipment used by rescue services throughout Germany.

It all began early in the 20th century, when, on a trip to England, Johann Heinrich Dräger witnessed a young man being pulled out the Thames and resuscitated using the traditional Schaeffer method. Still in London, Dräger then produced some initial sketches. Upon returning to Lübeck, he began developing a technical solution for a resuscitation machine. After a few more modifications, the result was "Dräger's Pulmotor, the first automatic oxygen resuscitation machine for artificial respiration", manufactured in the factory and construction institute for oxygen apparatus known at the time as Drägerwerk in Lübeck, Germany. In his memoirs, Johann Heinrich Dräger spoke of the Pulmotor as having enabled well over 1,000 officially attested resuscitations by March 1, 1917.

Successful attempts at resuscitating miners poisoned by carbon monoxide, for example, paid testament to the success of the oxygen machine just a short time after its market launch in 1908 - in defiance of the skeptics of positive pressure respiration. Dräger consequently started serial production which, even at that time, proved extremely successful in the United States. The first Dräger company on US soil was founded in the US in 1907, too: at 11 Broadway in New York City; shortly afterwards, the company was moved to Pittsburgh, PA, and renamed Draeger Oxygen Apparatus Company. Internationality and innovativeness have a long tradition at Dräger.

In the US, the Pulmotor respirator was bought mainly to equip rescue teams of mining companies (mine rescuers) and fire departments, hence Dräger's legendary reputation for breathing apparatus in the US: mine rescuers equipped with Dräger apparatus were known as Draegermen.

The Oxylog product family, which is still going strong today, superseded the successful Pulmotor in 1978. After the first applications of the Iron Lung in the fifties, long-term positive pressure ventilation was introduced. Today, this is fulfilled by the intensive care ventilators of the Evita family. All of these devices are based on the technical specifications of the Pulmotor. In fact, advancements in this technical innovation from the beginning of the 20th century are now not only used for emergency and long-term ventilation, but also in anesthesia and for home care.

For further information, please visit:
http://www.draeger.com

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...