A novel ontology-based biomedical search engine

When people search, they have questions in mind. GoPubMed allows to significantly faster find information needed through the use of background knowledge. GoPubMed:
  • retrieves PubMed abstracts for your search query,
  • detects terms from the Gene Ontology (GO) and Medical Subject Headings (MeSH) in the abstracts,
  • displays the subset of the GO and MeSH relevant to the keywords, and
  • allows you to browse the ontologies and display only papers containing specific GO and MeSH terms.

After performing a search, the resulting abstracts are annotated with your query keywords and GO and MeSH terms. The abstracts are grouped using the GO and MeSH terms, which appear in the text. Now the GO and MeSH hierarchies can be used to systematically explore the search results.

Note that only a subset of all GO and MeSH terms may be relevant to your query. This subset – more frequent terms - is presented on the left hand side. Sorting documents to a highly organised network facilitates the finding of relevant documents significantly.

The hierarchy of content shows the whole GO and MeSH ontologies. GO and MeSH serve as table of contents in order to structure the over 16 million articles of the MEDLINE data base.

About Gene Ontology (GO)
The GO provides a controlled vocabulary to describe gene and gene products in different organisms. GO is a knowledge network containing about 20.000 biological terms. It is built up as a directed acyclic graph starting from three basic areas namely

  • the molecular function of gene products,
  • their role in multi-step biological processes, and
  • their localization to cellular components.

GO terms are classified into only one of the three branches of the ontology. Although the ontology is presented as a tree, it is a network with cross links. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view.

About the Medical Subject Headings (MeSH)
MeSH is the controlled vocabulary thesaurus from National Library of Medicine's. It consists of sets of terms in a hierarchical structure that permits searching at various levels of specificity. At the most general level of the hierarchy are very broad headings such as "Anatomy" or "Diseases". More specific headings are found at more narrow levels.

There are more than 110,000 MeSH concepts in GoPubMed. There are also thousands of cross-references that assist in finding the most appropriate MeSH concept. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view. From the eleven levels of the MeSH hierarchy, GoPubMed uses the parts:

  • Anatomy,
  • Biological Sciences,
  • Chemicals and Drugs,
  • Diseases,
  • Health Care,
  • Natural Sciences,
  • Organisms,
  • Psychiatry and Psychology,
  • Techniques and Equipment, and
  • Technology, Industry, Agriculture

For further information, please visit:
http://www.gopubmed.com/

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...