Insilico Medicine Scientists Propose Stricter Standards for Evaluating Generative AI-Produced Molecules

Insilico MedicineA new microperspective in the ACS journal Medicinal Chemistry Letters evaluates recent research on artificial intelligence (AI)-generated molecular structures from the point of view of the medicinal chemist and recommends guidelines for assessing the novelty and validity of these compounds. The perspective, published as part of the journal's virtual special issue "New Enabling Drug Discovery Technologies - Recent Progress," provides an analysis of eight molecular structures produced from generative chemistry published in the past two years to reveal the impact of AI and machine learning (ML) methods on modern-day drug discovery. In total, the authors found 55 recent publications covering generative chemistry efforts.

Designing synthetically feasible molecular structures that are novel and experimentally valid in the context of the disease is a challenge for generative chemistry algorithms. "We hoped to provide an in-depth analysis of the strengths of certain AI and ML generative chemistry approaches to produce truly novel and synthetically feasible molecular structures," says Alex Aliper, Ph.D., President of Insilico Medicine, who co-authored the study.

Rather than simply focusing on AI-generated structures, the authors examine the validity of these structures from the medicinal chemist's perspective - including synthesis and biological assessment.

Ultimately, say the Insilico scientists, as terms like "generative AI" and "generative chemistry" become more widespread, it’s essential to define relevant terms better and demonstrate the validity of generated structures across various measures. Their recommendations include:

  • Thoroughly inspecting generated structures in regards to their novelty and patentability.
  • Using rationally balanced preprocessing rules and medicinal chemistry filters adapted for generative pipelines.
  • Avoiding misleading statements, especially “novel drug candidate” and “novel lead compounds,” which must be supported with exhaustive biological data. In many cases, “primarily hit compound” is the only term that can be reasonably applied for active compounds of generative origin.
  • Employing severe similarity metrics.
  • Providing medicinal chemists with all generated structures besides those presented by authors as the most promising ones.
  • Evaluating active molecules of AI origin at least using standard MTS or MTT assays to avoid nonspecific action and cytotoxicity.
  • Assessing synthetic accessibility.
  • Improving the generative engine, with more attention to the training set, the test set, and similarity metrics.
  • Paying more attention to reinforcement learning with advanced systems and processes intended to rapidly evaluate the generated molecules for desired properties.

"We are encouraged by the increasing use of generative AI in chemistry which can help speed and expand drug discovery efforts," says Alex Zhavoronkov, PhD, founder and CEO of Insilico Medicine and co-author of the paper. "But we believe that publications in generative chemistry should always include experimental validation and rigorous evaluation and review by medicinal chemists. We think the process can be further improved by introducing new techniques to generate and evaluate the novel molecular structures from a medicinal chemistry perspective to produce the next generation of novel AI-generated drugs."

About Insilico Medicine

Insilico Medicine, a clinical-stage end-to-end artificial intelligence (AI)-driven drug discovery company, is connecting biology, chemistry, and clinical trials analysis using next-generation AI systems. The company has developed AI platforms that utilize deep generative models, reinforcement learning, transformers, and other modern machine learning techniques to discover novel targets and to design novel molecular structures with desired properties. Insilico Medicine is delivering breakthrough solutions to discover and develop innovative drugs for cancer, fibrosis, immunity, central nervous system (CNS) diseases and aging-related diseases.

Ivanenkov Y, Zagribelnyy B, Malyshev A, Evteev S, Terentiev V, Kamya P, Bezrukov D, Aliper A, Ren F, Zhavoronkov A.
The Hitchhiker's Guide to Deep Learning Driven Generative Chemistry.
ACS Med Chem Lett. 2023 Jun 30;14(7):901-915. doi: 10.1021/acsmedchemlett.3c00041

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...