Philips and GlyGenix Therapeutics Team up to Research Ultrasound-Mediated Gene Therapy

Royal Philips ElectronicsRoyal Philips Electronics (NYSE: PHG, AEX: PHI) and GlyGenix Therapeutics, Inc. (Woodbridge, Connecticut, USA) today announced a joint research agreement to explore the feasibility of using ultrasound technologies for gene therapy. In particular, the collaboration will research the treatment of Glycogen Storage Disease Type 1a (GSD-1a) in pre-clinical studies. The collaboration unites Philips' expertise in medical imaging technologies for diagnosis and minimally-invasive medical procedures with GlyGenix's expertise in correcting the genetic defect in GSD-1a.

"The potential to deliver genes using a targeted approach will be a significant advance for correcting genetic defects and could offer the prospect of curing hereditary diseases such as GSD-1a," commented William Fodor, CSO of GlyGenix Therapeutics, Inc. "Philips' ultrasound-mediated DNA delivery techniques offer the opportunity to deliver genes without the size constraints and limitations of viral packaging systems, and thus open the door to the development of more robust and effective therapeutic genes."

"Medical imaging systems already play a crucial role in minimally-invasive medical procedures such as opening obstructed arteries, correcting heart rhythm disorders, or sampling tissue biopsies of suspected lesions," said Henk van Houten, senior vice president of Philips Research and head of the Healthcare research program. "The development of ultrasound techniques that could non-invasively target the delivery of drugs, genes and stem cells to specific parts of the body opens up further possibilities to advance patient care."

GSD-1a is an inherited disease that makes it impossible for the body to regulate blood sugar (glucose) levels, due to a defective G6Pase gene that prevents the body from producing an enzyme called glucose-6-phosphatase. Although it is a rare disease, only affecting around 1 in every 100,000 to 200,000 births in the USA, it results in a significant reduction in patients’ quality of life and can lead to potentially life-threatening co-morbidities in early adulthood. Currently, there are no approved curative treatments for GSD-1a. Correcting the genetic defect that causes it could offer the prospect of an effective therapy that would allow patients with GSD-1a to lead a normal life.

Current gene therapies that rely solely on the bloodstream to deliver corrective gene molecules typically fail to deliver sufficient quantities to the target organs. However, by directing focused ultrasound to target organs following DNA delivery, an increase in uptake via a process known as sonoporation has been successfully demonstrated in pre-clinical studies. Sonoporation increases the permeability of cell walls to allow the uptake of large molecules, thereby enabling the delivery of therapeutic genes. Compared to current gene therapies that use viral vectors to infect cells, this ultrasound-mediated technique carries no risk of an anti-viral immune or inflammatory response. In addition, this targeted approach could reduce side effects.

The proposed treatment is known as ultrasound-mediated plasmid DNA (pDNA) delivery. The research program into it will specifically target the expression of a functional human G6Pase therapeutic pDNA to the liver, the primary organ responsible for glycogen storage and glucose release. Pre-clinical studies to investigate the feasibility of the technique will be carried out by Philips Research and GlyGenix Therapeutics in collaboration with the Duke University School of Medicine's Division of Medical Genetics (Durham, North Carolina, USA) - a recognized leader in GSD-1a diagnosis, managed care, pediatric genetics and experimental models.

GlyGenix Therapeutics, Inc. holds a worldwide exclusive license to the G6Pase gene, protein, and related mutations for the treatment of GSD-1a. GlyGenix will seek to obtain orphan drug designation for the treatment of GSD-1a, which would provide 7 years of market exclusivity.

Related news articles:

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people's lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs approximately 116,000 employees in more than 60 countries worldwide. With sales of EUR 26 billion in 2008, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

About GlyGenix Therapeutics
Based in Woodbridge, CT, GlyGenix Therapeutics, Inc. is a privately held biotech company developing therapeutic solutions for severe metabolic disorders. The company's initial focus is in using gene therapy products with non-viral delivery systems for the treatment of Glycogen Storage Disease Type 1a (GSD1a), a rare and severe chronic genetic liver disease for which no approved therapies exist. Founded in 2006, and with the aid of a sizable body of pre-clinical data, GlyGenix Therapeutics, Inc is poised to expedite the initiation of clinical trials for the treatment of GSD1a. News from GlyGenix Therapeutics, Inc is located at www.glygenixtherapeutics.com.

Most Popular Now

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...

Bayer Acquires HiDoc Technologies and Ca…

Bayer is today announcing that it plans to acquire HiDoc Technologies GmbH in the first quarter of 2025 and to start commercialization of the digital health application, Cara Care®. Cara...