New FP7 eHealth Project - DebugIT

The DebugIT project is a large -scale integrating project funded within the 7th EU Framework Programme (FP7). The main objectives are to build IT tools that should have significant impacts for the monitoring and control of infectious diseases and antimicrobial resistances in Europe. This will be realized by building a technical and semantic infrastructure able to:
  • share heterogeneous clinical data sets from different hospitals in different countries, with different languages and legislations,
  • analyze large amounts of this clinical data with advanced multimedia data mining, and
  • apply the obtained knowledge for clinical decisions and outcome monitoring.

The DebugIT project, with its innovative approach, is an example of how ICT tools can be used to address the emerging challenges in healthcare. The DebugIT project addresses several of the overriding call topics at once by tackling the problems around antibiotics and of antimicrobial resistance of infectious diseases in an international consortium uniting world class research facilities, SMEs and industry partners.

It is an example of partnering at the European level to keep pace with soaring research costs by making use of complex IT technology technologies. It addresses the main socio-economic challenge in healthcare, namely to make Europe's healthcare systems safer and sustainable.

The research consortium includes public and private research institutions, university and teaching hospitals, industry and SMEs. The results of the application of the RTD will lead to higher patient safety and thereby fewer, more targeted intervention and fewer days in hospital. It means improving the overall productivity and efficiency of healthcare systems, delivering more personalised care solutions by allowing the actual patient data to be fed immediately into the system. It will therefore improving the Qquality of Life for patients and save their lives due to better, shorter and more targeted treatment. Patient safety is optimised through medical interventions with respect to treatment of infectious diseases and prescribing and administering antibiotics. The decision support will help avoid medical and other healthcare errors.

For further information, please visit:
http://www.debugit.eu

Related article:

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...