European Researchers Advance Bone Implants Technology

European researchers are relentless in their pursuit to develop technologies across the board. Case in point is medical technology and bone implants. Enter a team of researchers from the Germany-based Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research who have developed a simulation programme calculating the internal structure and density distribution of bone material.

The production of bone implants with a structure similar to natural bone is being produced easily. The initial step in this process is the calculation of the bone's internal structure and porosity, followed by the 'baking' of the implant from metal powder. The second step is conducted in a prototyping machine.

Scientists involved in the production of bone implants look to nature for resources, taking a close look at the structure of bone and how it is constructed. While bones are light, they have the capacity to tolerate strong loads. Also, the interior of bone is sponge-like but firm and compact in some areas.

With this in mind, the Fraunhofer team rose to the challenge of the lightweight construction industry which asked 'How can this be replicated?' The researchers successfully developed a simulation programme that shows how bone structure must be constructed in order to meet the specified requirements.

This latest development gives engineers the means to produce complex components with the help of rapid prototyping technology. The process focuses on coating a surface with wafer-thin layers of special metal powder. A laser beam sinters (heats without melting) ores or powdery metals into a coherent mass in the areas that must be firm.

"It's like baking a cake," explains Andreas Burblies, a representative for the Fraunhofer Numerical Simulation of Products, Processes Alliance. "The end product is an open-pored element. Any remaining loose powder is then removed. Each point possesses exactly the right density and thus also a certain stability," he adds.

Engineers can now make lightweight components that are tailor-made for each application. The upshot is that these components will be able to withstand heavy loads. The research team has also given the engineers the means to change the internal structure of the parts once they are produced through precision drilling.

"We can manufacture and adapt the parts exactly as required," Mr Burblies says. Experts have said that the production of individual implants with an internal structure that is similar to a patient's bone is not difficult. Biomaterials-based metal powders, like steel alloys and titanium, give engineers an edge because reconstruction of other bone elements is made easy. This innovative technique will draw in several industries, including bone implants production, and aircraft and automobile manufacturers.

For more information, please visit:
http://www.ifam.fraunhofer.de

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...