euHeart Project by CORDIS News

The EU's Seventh Framework Programme (FP7) has awarded EUR 14 million to a 4-year project, euHeart, for the improvement of the diagnosis, therapy and treatment of cardiovascular disease (CVD). The consortium comprises public and private partners from 16 research, academic, industrial and medical organisations from 6 European countries.

In the EU alone, CVD takes the lives of 1.9 million people annually and costs an estimated EUR 105 billion in healthcare. Advances in the management of coronary heart disease and chronic heart failure are, therefore, seen as crucial to reducing the human cost and financial burden of CVD.

The euHeart consortium focuses on developing technologies for the diagnosis and treatment of heart conditions such as heart failure, coronary artery disease, heart rhythm disorders and congenital heart defects. Specifically, it aims to develop computer models of the heart on multiple scales, from the molecular level to that of the whole organ, that can be adapted to individual patients.

The computer models will be functional as well as structural, incorporating clinical knowledge of how CVD affects the heart at each level. It is hoped that this will lead to the development of tools designed to predict outcomes for different therapies or treatments; if models can be personalised to individual patients, therapy and treatment could be equally personalised.

A person suffering from CVD could benefit from having a personalised computer model of their heart because it would address their own peculiarities. For example, the electrical activity in every patient's heart is subtly different; for certain conditions a computerised model reflecting the patient's unique heart structure and function would enable doctors to test the results of destroying different areas of tissue before they have to operate.

Multi-scale models have been used mainly in basic research, as the difficulty of adapting these models to individual human beings makes clinical applications impractical. To overcome this problem, the euHeart project intends to develop its models using novel information and communication technologies together with existing clinical data such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound scans, as well as measurements of blood flow and blood pressure in the coronary arteries and electrocardiograms. Gene defects in individual patients could also be taken into account.

Pre-diagnosed conditions such as heart arrhythmias would likely be the first to benefit from advances in computer modelling of CVD. Heart failure, coronary artery disease and diseases of the heart valves and aorta would also be major clinical focus areas.

As in many fields of research, one of the challenges of CVD modelling is integrating the vast amount of emerging and existing data; establishing CVD models on multiple levels could provide a consistent framework for such integration. The euHeart project will establish an open-source framework (using standardised mark-up languages such as CellML and FieldML) for both normal and pathological models that will integrate and interconnect existing and future models from myriad areas of biological research. It will additionally establish a shared library of innovative tools for biophysical simulations, model personalisation and automated image analysis.

Creating the highly personalised tools proposed by the consortium is no small feat: the euHeart consortium brings together an incredible amount of expertise and talent from across the EU to make this mammoth task possible. Different parts of the program are co-ordinated by Philips Research, King's College London and the University of Oxford; the consortium also includes participants in Germany, Spain, France and Belgium. The project is part of the Virtual Physiological Human (VPH) initiative, which aims to produce a unified computer model of the entire human body as a single complex system.

Related news articles:

More information on the euHeart project:
http://www.research.philips.com/newscenter/
backgrounders/080820-euheart.html

More information on the parallel HeartCycle project:
http://www.research.philips.com/technologies/
healthcare/homehc/heartcycle/heartcycle-gen.html

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...