Harnessing grid computing to save women's lives

Breast cancer is the most common cancer in women. In the EU and the US, one in eight will develop it at some point in their lives, and it will kill one in 28. But harnessing the power of the grid could help increase the accuracy of diagnoses.

Mammography examinations save thousands of women's lives every year. However the rate of misdiagnosis can be high – in some instances up to 30%. This is due in part to physical differences across patient populations, differences in equipment and procedures, and difficulty in using computers to help detect changes in breast tissue.

Computer-aided detection of this potentially fatal cancer, especially when used together with the traditional method of visually screening mammograms, can not only shorten the time needed for analysis, but can also help increase the accuracy of diagnoses.

Novel approach to comparative diagnoses
The team in the European IST project MammoGrid, which ended in August 2005, aimed to apply the power of the grid to see if they could more accurately detect breast cancer. The prototype software that resulted is already enabling users – hospitals, doctors, clinicians, radiologists and researchers – to harness the massive capacity of grid computing to run advanced algorithms on digital mammograms, stored Europe-wide.

The project team also developed a geographically distributed, grid-based database of standardised images and associated patient data. Already, there are 30,000 images stored from over 3,000 patients, equally balanced between the University Hospital of Cambridge in the UK and Udine in Italy.

The novelty of the MammoGrid approach lies in the application of grid technologies to medical diagnoses, and in providing the data and tools to enable users to compare new mammograms with existing ones in the grid database. Users can access mammograms from a variety of sources, and also computer-aided detection algorithms to detect micro-calcifications (tiny specks of calcium in the breast that could indicate cancer) and monitor breast density (dense tissue is considered a major risk factor).

Sharing resources and patient data
"The system in its current version allows users to securely share both resources and patient data which has been treated to ensure anonymity," explains project coordinator David Manset of Maat GKnowledge in Madrid, Spain. "It also supports effective co-working and provides the means for powerful comparative analyses through the use of a standard format for mammogram images".

This break-through functionality could lead to major advances in prevention and detection of the disease. It also opens the door to novel, broad-based statistical analyses of the incidence of breast cancer and its different forms.

MammoGrid+ building on the achievements
Since the project ended, a new consortium independent of IST funding has been set up to further develop the prototype and take it closer to market needs. Under Mammogrid+, a new set of partners (including organisations such as CIEMAT (Spain's Energy, Environmental and Technological Research Centre), CERN (Switzerland), SES (health service for the Extremadura region of Spain, representing the hospitals of Infanta Christina, Don Benito and Merida), and the university hospitals of Cambridge and Udine) is building on the results already achieved.

The new project team has set up four separate sites, to simulate the needs of four different hospitals and test the latest project developments. The results from these tests have been evaluated by a panel of two IT experts and five clinicians from the hospitals in Spain’s Extremadura region.

Their feedback is being incorporated into a pre-commercial release of the software (Mammogrid+ version 1.0) in June 2007. This version is being deployed within the five hospitals collaborating in the project – these hospitals will also receive the hardware infrastructure to host the Mammogrid+ suite.

Future plans include broadening the existing database Europe-wide. Already a further hospital, the university hospital of Cork in Ireland, has shown interest in joining the Mammogrid+ network.

"The inclusion of the new hospitals will increase the coverage of the database and make our knowledge more relevant and more accurate," Manset concludes. "This will allow larger and more refined epidemiological studies. In the end, these techniques could help save lives."

Contact:
David Manset
Maat GKnowledge
Calle San Bernardo num 115, 5 izq
E-28015 Madrid
Spain
Tel: +34 68 780 2661
Fax: +34 67 347 9175
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results Portal

For further information, please visit:
www.mammogrid.com

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...