Fraunhofer Researchers are Presenting the "Mobile Health Assistant"

Sensor Assistance for Vital EventsHelp is at hand for cardiovascular patients: In future, a smart sensor network will monitor sufferers and alert the doctor when necessary. Fraunhofer researchers will be presenting the "Mobile Health Assistant" at the CeBIT fair in Hanover from March 15 to 21, 2007 (Hall 9, Stand B36).

A slight dizzy feeling when climbing the stairs, a brief dragging pain in the chest – are these the harmless after-effects of physical exertion, or are they the precursors of a heart attack? People with an increased risk of cardiovascular disease live in constant fear of sudden heart failure. Six Fraunhofer Institutes have spent two years working on a system that can record the main cardiovascular functions 24 hours a day over a long period of time, even away from the doctor’s office, and enables communication with qualified medical staff.

The key components of the mobile health assistant were developed in a joint Fraunhofer project entitled senSAVE® (Sensor Assistance for Vital Events). Along with comfortable, easy-to-wear sensors that constantly measure all the necessary data and transmit them by radio to a PDA, the assistant has the necessary software to collect and analyze the flood of information and send it via Internet or mobile network to a telemedical support center, where trained staff can assess how critical the situation is, advise patients over the phone, and call a doctor if necessary.

It was a challenging task to find suitable electrodes for channeling the ECG readings, as they would need to be in permanent contact with the patient’s skin for days at a time. The Fraunhofer researchers developed a highly flexible dry electrode that can be woven into the elastic fibers of a sensor shirt. Potential wearers are fitted with their own tailor-made sensor shirt. The sheer pressure of the garment is sufficient to establish contact between the skin and the adhesive electrodes. A second layer of fabric covers the sensor wiring and the electronic circuit board.

The oxygen saturation of the blood and the pulse wave curve are determined by a pulse oximeter. Until now the pulse oximeter has been pushed over the index or middle finger with a commercially available finger clip. In future it will be integrated in a strap to be worn on the person's wrist. From there, the readings will be radioed to a miniature computer, such as a smart phone or a PDA, which at the same time receives the ECG readings. The time difference between these two sets of readings yields the pulse wave transit time, from which it is possible in turn to deduce the blood pressure transit time – non-stop, 24 hours a day.

The PDA is the platform for the "Mobile Health Assistant". As well as recording the objective medical readings, it registers the user's subjective feelings and experiences – ranging from wellbeing or weight, through drugs taken and meals eaten, to sporting activities and exciting events. Such additional information makes it easier for the doctor to interpret and respond to irregularities and changes in the patient's cardiovascular readings. The patient is also advised and monitored on health issues. Rather like a personal organizer, the "digital nurse" can manage health plans, motivate the patient to stick to them, and suggest alternatives where appropriate.

Many senior citizens are unaccustomed to using a cell phone or a PDA. To meet this need, the Fraunhofer researchers have developed interface prototypes that take into account the particular abilities or limitations of their future users. One version is very simple, displaying only the most important facts in large type which can be read even by patients who have misplaced their spectacles. The other version is rather more complex, and so configured that it can be combined with other services on a PDA. The ergonomic design of this user interface can be viewed at CeBIT in a live demonstration of the "Mobile Health Assistant".

Fraunhofer innovation initiative "Intelligent Products and Environments"
Have you ever been stranded at the train station in a foreign city, not knowing which way to turn? Are you among the risk group for cardiovascular disease? Do you check each food item in the supermarket very carefully because you are not allowed to eat certain ingredients or would prefer not to do so? These three entirely different situations all have one thing in common: Ambient intelligence can help you. The vision of ambient intelligence is one in which everything is networked to form an "intelligent environment" that adapts to meet the user's needs. In order to make this vision a reality, several Fraunhofer Institutes have pooled their expertise in a Fraunhofer innovation initiative entitled "Intelligent Products and Environments". Under this initiative, scientists are developing demonstration platforms in the areas of health care assistance, smart logistics environments, and travel assistance. The demonstrators on display at CeBIT 2007 are just a few examples of how ambient intelligence could very soon be making life a little bit easier for all of us.

For further information, please contact:
Robert Couronné
Telefon +49 (0) 91 31/7 76-73 10
Fax +49 (0) 91 31/7 76-73 09
This email address is being protected from spambots. You need JavaScript enabled to view it.

Fraunhofer-Institut für Integrierte Schaltungen
Am Wolfsmantel 33
91058 Erlangen

www.sensave.de

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...