Integrating Digital Twins and Deep Learning for Medical Image Analysis in the Era of COVID-19

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins may allow healthcare organizations to determine methods of improving medical processes, enhancing patient experience, lothis studyring operating expenses, and extending the value of care. During the present COVID-19 pandemic, various medical devices, such as X-rays and CT scan machines and processes, are constantly being used to collect and analyze medical images. When collecting and processing an extensive volume of data in the form of images, machines and processes sometimes suffer from system failures, creating critical issues for hospitals and patients.

To address this, this study introduce a digital-twin-based smart healthcare system integrated with medical devices to collect information regarding the current health condition, configuration, and maintenance history of the device/machine/system. Furthermore, medical images, that is, X-rays, are analyzed by using a deep-learning model to detect the infection of COVID-19. The designed system is based on the cascade recurrent convolution neural network (RCNN) architecture. In this architecture, the detector stages are deeper and more sequentially selective against small and close false positives. This architecture is a multi-stage extension of the RCNN model and sequentially trained using the output of one stage for training the other. At each stage, the bounding boxes are adjusted to locate a suitable value of the nearest false positives during the training of the different stages. In this manner, the arrangement of detectors is adjusted to increase the intersection over union, overcoming the problem of overfitting. This study train the model by using X-ray images as the model was previously trained on another dataset.

The developed system achieves good accuracy during the detection phase of COVID-19. The experimental outcomes reveal the efficiency of the detection architecture, which yields a mean average precision rate of 0.94.

Imran Ahmed, Misbah Ahmad, Gwanggil Jeon.
Integrating Digital Twins and Deep Learning for Medical Image Analysis in the era of COVID-19.
Virtual Reality & Intelligent Hardware, 2022. doi: 10.1016/j.vrih.2022.03.002

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...