AI can Help Patients Interpret Home Tests for COVID-19

New machine learning research led by Professor Farrokh Alemi and Professor Janusz Wojtusiak provides a way for patients and clinicians to better predict whether symptoms are due to COVID-19, influenza, or RSV. A more accurate diagnosis leads to better decisions on course of care to heal patients and prevent the disease from spreading. With fellow George Mason University researchers and Vibrent Health, Alemi and Wojtusiak recently published a series of articles in a special edition of the Journal of Quality Management in Healthcare discussing how artificial intelligence (AI) can help in the diagnosis of COVID from a combination of symptoms and home tests.

With their research, Alemi and Wojtusiak are now working on a website to deliver an AI-based resource to assist individuals in identifying recommended actions as a result of their clinical profile and COVID at-home test results.

"We see AI working to radically improve clinical triage and test-to-treat decisions," said Wojtusiak. Alemi added, "AI will allow individuals to feel more confident about their decisions to stay home, seek care, or to socially isolate. Lots of people test at end of their symptoms and surprisingly they find they are still positive. What does one do if symptoms and home test results do not agree? Our AI will help these individuals understand how to proceed."

The study in paper 1 (as listed below) found that the timing of symptoms matters in a COVID diagnosis. For example, a runny nose as an early symptom increased the odds of testing positive for COVID, and a runny nose as a symptom that occurred later decreased the odds. Similarly, fever is almost always a late symptom, so lack of fever early on should not be used to rule out COVID.

The results in paper 2 found that COVID cannot be diagnosed from individual symptoms; however, a cluster of three or more symptoms can aid in diagnosis. Findings from paper 4 found the accuracy of diagnosing COVID symptoms was highest when symptoms from different body symptoms were present. For example, a combination of neurological and common respiratory symptoms was more diagnostic than either one of the sets of symptoms individually. In addition, COVID has different presentations depending on age, severity of illness, and virus mutations.

Paper 3 discusses how an AI symptom screening could improve, and for vaccinated individuals replace, at-home antigen tests. At-home tests are not always accurate and require clinical review, but these tests are done at home where no such review is available. AI symptom screening can help make these tests more accurate. The study reports that AI symptom screening is more accurate than taking a second home test.

The four papers published in the special supplement are:

A fifth paper, titled Modeling the Probability of COVID-19 Based on Symptom Screening and Prevalence of Influenza and Influenza-Like Illnesses, from same group of researchers was also published in the Journal of Quality Management in Healthcare in April/June 2022.

Alemi was Mason’s principal investigator. Mason was a subcontractor to Vibrent Health, where Praduman Jain was the principal investigator of the project. (Jain is a member of Mason’s College of Public Health advisory board.) Other Mason-affiliated researchers on these projects include Associate Professor Amira Roess, affiliate faculty member Jee Vang, doctoral student Elina Guralnik, former student and adjunct faculty Wejdan Bagais. Rachele Peterson and Josh Schilling from Vibrent Health and F. Gerard Moeller from Virginia Commonwealth University were also part of the research team.

The research was funded by the program called “Digital Health Solutions for COVID-19” launched by the National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB).

The methods used in these five papers vary. In paper 4, researchers conducted a meta-analysis of the literature, using data from published papers. In the other papers, researchers surveyed patients who took a PCR test and examined the relationship between the patients’ symptoms and PCR test results. Most research was done using data collected between October 2020 and January 2021, prior to the current variants such as BA.5 or BQ.1.

Previous, related publications by these investigators include a study examining how computers can distinguish between COVID-19 and flu and an analysis of symptomatic university students and social distancing.

Alemi F, Vang J, Bagais WH, Guralnik E, Wojtusiak J, Moeller FG, Schilling J, Peterson R, Roess A, Jain P.
Combined Symptom Screening and At-Home Tests for COVID-19.
Qual Manag Health Care. 2023 Jan-Mar 01;32(Suppl 1):S11-S20. doi: 10.1097/QMH.0000000000000404

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...