Machine Learning Combines with Multispectral Infrared Imaging to Guide Cancer Surgery

Surgical tumor removal remains one of the most common procedures during cancer treatment, with about 45 percent of cancer patients undergoing surgical tumor removal at some point. Thanks to recent progress in imaging and biochemical technologies, surgeons are now better able to tell tumors apart from healthy tissue. Specifically, this is enabled by a technique called "fluorescence-guided surgery" (FGS).

In FGS, the patient’s tissue is stained with a dye that emits infrared light when irradiated with a special light source. The dye preferentially binds to the surface of tumor cells, so that its lightwave emissions provide information on the location and extent of the tumor. In most FGS-based approaches, the absolute intensity of the infrared emissions is used as the main criterion for discerning the pixels corresponding to tumors. However, it turns out that the intensity is sensitive to lighting conditions, the camera setup, the amount of dye used, and the time elapsed after staining. As a result, the intensity-based classification is prone to erroneous interpretation.

But what if we could instead use an intensity-independent approach to classify healthy and tumor cells? A recent study published in the Journal of Biomedical Optics and led by Dale J. Waterhouse from University College London, UK, has now proposed such an approach. The research team has developed a new technique that combines machine learning with short-wave infrared (SWIR) fluorescence imaging to detect precise boundaries of tumors.

Their method relies on capturing multispectral SWIR images of the dyed tissue rather than simply measuring the total intensity over one particular wavelength. Put simply, the team sequentially placed six different wavelength frequency (color) filters in front of their SWIR optical system and registered six measurements for each pixel. This allowed the researchers to create the spectral profiles for each type of pixel (background, healthy, or tumor). Next, they trained seven machine learning models to identify these profiles accurately in multispectral SWIR images.

The researchers trained and validated the models in vivo, using SWIR images with a lab model for an aggressive type of neuroblastoma. They also compared different normalization approaches aimed at making the classification of pixels independent of the absolute intensity such that it was governed by the pixel's spectral profile only.

Out of the seven tested models, the best performing model achieved a remarkable per-pixel classification accuracy of 97.5 percent (the accuracies for tumor, healthy, and background pixels were 97.1, 93.5, and 99.2 percent, respectively). Moreover, thanks to the normalization of the spectral profiles, the results of the model were far more robust against changes in imaging conditions. This is a particularly desirable feature for clinical applications since the ideal conditions under which new imaging technologies are usually tested are not representative of the real-world clinical environment.

Based on their findings, the team has high hopes for the proposed methodology. They anticipate that a pilot study on its implementation in human patients could help revolutionize the field of FGS. Additionally, multispectral FGS could be extended beyond the scope of the present study. For example, it could be used to remove surgical or background lights from images, remove unwanted reflections, and provide noninvasive ways for measuring lipid content and oxygen saturation. Moreover, multispectral systems enable the use of multiple fluorescent dyes with different emission characteristics simultaneously, since the signals from each dye can be untangled from the total measurements based on their spectral profile. These multiple dyes can be used to target multiple aspects of disease, providing surgeons with even greater information.

Future studies will surely unlock the full potential of multispectral FGS, opening doors to more effective surgical procedures for treating cancer and other diseases.

DJ Waterhouse et al.
Enhancing intra-operative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning.
J. Biomed. Opt. 29(9), 094804, 2023. doi: 10.1117/1.JBO.28.9.094804

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...