A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.

The majority of all drugs are small molecules that influence the activity of proteins. These small molecules - if well understood - are also invaluable tools to characterize the behavior of proteins and to do basic biological research. Given these essential roles, it is surprising that for more than 80 percent of all proteins, no small-molecule binders have been identified so far. This hinders the development of novel drugs and therapeutic strategies, but likewise prevents novel biological insights into health and disease.

To close this gap, researchers at CeMM in collaboration with Pfizer have expanded and scaled an experimental platform that enables them to measure how hundreds of small molecules with various chemical structures interact with all expressed proteins in living cells. This yielded a rich catalog of tens of thousands of ligand-protein interactions than can now be further optimized to represent starting points for further therapeutic development. In their study, the team led by CeMM PI Georg Winter has exemplified this by developing small-molecule binders of cellular transporters, components of the cellular degradation machinery and to understudied proteins involved in cellular signal transduction. Moreover, taking advantage of the large dataset, machine learning and artificial intelligence models were developed that can predict how additional small molecules interact with proteins expressed in living human cells.

"We were amazed to see how artificial intelligence and machine learning can elevate our understanding of small-molecule behavior in human cells. We hope that our catalog of small molecule-protein interactions and the associated artificial intelligence models can now provide a shortcut in drug discovery approaches," says Georg Winter. To maximize the potential impact and usefulness for the scientific community, all data and models are made freely available through a web application. "This was an outstanding partnership between industry and academia. We are delighted to present the results which were obtained through three years of close collaboration and teamwork between the groups. It’s been a great project," says Dr Patrick Verhoest, Vice President and Head of Medicine Design at Pfizer.

Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE.
Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells.
Science. 2024 Apr 26;384(6694):eadk5864. doi: 10.1126/science.adk5864

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...