Facial Thermal Imaging + AI Accurately Predict Presence of Coronary Artery Disease

A combination of facial thermal imaging and artificial intelligence (AI) can accurately predict the presence of coronary artery disease, finds research published in the open access journal BMJ Health & Care Informatics.

This non-invasive real-time approach is more effective than conventional methods and could be adopted for clinical practice to improve the accuracy of diagnosis and workflow, pending testing on larger and more ethnically diverse numbers of patients, suggest the researchers.

Current guidelines for the diagnosis of coronary heart disease rely on probability assessment of risk factors which aren’t always very accurate or widely applicable, say the researchers.

And while these can be supplemented with other diagnostics, such as ECG readings, angiograms, and blood tests, these are often time consuming and invasive, they add.

Thermal imaging, which captures temperature distribution and variations on the object’s surface by detecting the infrared radiation emitted by that object, is non-invasive.

And it has emerged as a promising tool for disease assessment as it can identify areas of abnormal blood circulation and inflammation from skin temperature patterns.

The advent of machine learning technology (AI), with its capacity to extract, process, and integrate complex information, might enhance the accuracy and effectiveness of thermal imaging diagnostics.

The researchers therefore set out to look into the feasibility of using thermal imaging plus AI to accurately predict the presence of coronary artery disease without the need for invasive, time consuming techniques in 460 people with suspected heart disease.Their average age was 58; 126 (27.5%) of them were women.

Thermal images of their faces were captured before confirmatory examinations to develop and validate an AI assisted imaging model for detecting coronary artery disease.

In all, 322 participants (70%) were confirmed to have coronary artery disease. These people tended to be older and they were more likely to be men. They were also more likely to have lifestyle, clinical, and biochemical risk factors, as well as higher use of preventive meds.

The thermal imaging plus AI approach was around 13% better at predicting coronary artery disease than the pre-test risk assessment involving traditional risk factors and clinical signs and symptoms.

Among the three most significant predictive thermal indicators, the most influential was the overall left-right temperature difference of the face, followed by the maximal facial temperature, and average facial temperature.

And, specifically, the average temperature of the left jaw region was the strongest predictive feature, followed by the temperature range of the right eye region and the left-right temperature difference of the left temple regions.

The approach also effectively identified traditional risk factors for coronary artery disease: high cholesterol; male sex; smoking; excess weight (BMI); fasting blood glucose, as well as indicators of inflammation.

The researchers acknowledge the relatively small sample size of their study and the fact that it was carried out at only one centre. And the study participants had all been referred for confirmatory tests for suspected heart disease.

But they nevertheless write: "The feasibility of [thermal imaging] based [coronary artery disease] prediction suggests potential future applications and research opportunities."

They add: "As a biophysiological-based health assessment modality, [it] provides disease-relevant Information beyond traditional clinical measures that could enhance [atherosclerotic cardiovascular disease] and related chronic condition assessment.

"The non-contact, real-time nature of [it] allows for instant disease assessment at the point of care, which could streamline clinical workflows and save time for important physician–patient decision-making. In addition, it has the potential to enable mass prescreening."

And they conclude: "Our developed [thermal imaging] prediction models, based on advanced [machine learning] technology, have exhibited promising potential compared with the current conventional clinical tools.

"Further investigations incorporating larger sample sizes and diverse patient populations are needed to validate the external validity and generalisability of the current findings."

Kung M, Zeng J, Lin S, Yu X, Liu C, Shi M, Sun R, Yuan S, Lian X, Su X, Zhao Y, Zheng Z, Ji X.
Prediction of coronary artery disease based on facial temperature information captured by non-contact infrared thermography.
BMJ Health Care Inform. 2024 Jun 3;31(1):e100942. doi: 10.1136/bmjhci-2023-100942

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...