Large Language Models Illuminate a Progressive Pathway to AI Healthcare Assistant

This study is led by Prof. Bin Dong (Beijing International Center for Mathematical Research, Peking University) and Prof. Lin Shen (Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute).

With the onset of the 21st century marked by a staggering growth in artificial intelligence (AI) capabilities, we have witnessed groundbreaking advancements and transformations across various industries. Particularly in the medical field, such transformations are even more pronounced. However, while AI has unveiled countless new opportunities and possibilities for us, it also sheds light on the profound complexity inherent in medical processes. When considering key stages like diagnosis, treatment, and prognosis, the real-world medical data we grapple with is incredibly diverse and intricate. Doctors, when dealing with this data, not only refer to a vast and complicated body of standard medical knowledge but also need to craft individualized treatment plans based on the unique circumstances of each patient. Furthermore, medical examinations are multimodal, encompassing domains like pathology, radiology, and genomics. Faced with such a scenario, integrating this plethora of data and information to form a coherent and comprehensive diagnosis and treatment strategy is undeniably challenging. Most of the current tools are isolated for single tasks, implying that clinical doctors must engage in more holistic analysis and judgment during decision-making. Hence, there’s an urgent need for powerful intelligent assistance tools to aid these physicians. This is precisely what large language models (LLMs), like GPT-4, offer. Not only can they help doctors consolidate and interpret intricate data, but they also provide insights grounded in extensive knowledge,7 thus ensuring more efficient and precise assistance in pivotal stages like diagnosis, treatment, and prognosis.1, 5, 8 With the aid of such intelligent tools, we aspire to delve deeper into a patient’s genuine situation and make more apt and accurate medical decisions.

In this context, LLMs such as GPT-4, ChatGPT, and Claude have gradually made their mark in the medical domain. Taking GPT-4 as an example, its exceptional performance in the United States Medical Licensing Examinations (USMLE) has far exceeded the expectations of many experts. Yet, this is only the tip of the iceberg. While the practical application of LLMs in healthcare is still in its early stages, preliminary research has already unveiled their tremendous potential in specialized medical research and potential clinical decision support. Especially in tasks involving the integration of multimodal medical data from pathology, radiology, and genomics, LLMs have exhibited their unique ability for in-depth interpretation and linkage. Of course, their practical effects and values in real medical environments still require further study and validation. With the introduction of these advanced tools, we not only anticipate efficient consolidation of multisource medical data but also expect AI agents to offer support in predictive analysis and patient management for physicians. For instance, AI agents could assist in analyzing patient histories, laboratory results, and radiological data, subsequently providing data-driven diagnostic suggestions. Moreover, these tools can further help doctors in choosing the optimal treatment plan from a plethora of options, ensuring patients receive individualized and optimal therapeutic outcomes. Through this approach, we can look forward to a medical decision-making process that is not only more scientific but also more systematic, ensuring patients receive the best medical care.

Given the outstanding potential of LLMs in medicine, the study aims to conduct a systematic and progressive review of the recent advances achieved by LLMs in this field. It highlights the use of both general and specialized medical LLMs, primarily focusing on text-based interactions. Traditional unimodal approaches often overlook the complex multimodal nature of the medical field, prompting the development of multimodal LLMs that enhance diagnostic accuracy and efficacy. Despite notable advancements, challenges such as achieving true personalization, maintaining ongoing model updates, and equipping AI with complex problem-solving abilities remain. In this context, LLM-driven autonomous agents emerge as promising tools with diverse applications in healthcare. Moreover, assessing the efficacy and safety of medical LLMs is crucial. This review’s importance lies in shedding light on the current role of LLMs in healthcare, assessing their transformative effects on medical practices, and identifying obstacles to be addressed to fully leverage their potential in enhancing patient care and advancing medical science.

Mingze Yuan, Peng Bao, Jiajia Yuan, Yunhao Shen, Zifan Chen, Yi Xie, Jie Zhao, Quanzheng Li, Yang Chen, Li Zhang, Lin Shen, Bin Dong.
Large language models illuminate a progressive pathway to artificial intelligent healthcare assistant.
Medicine Plus, 2024. doi: 10.1016/j.medp.2024.100030

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...