Large Language Models Illuminate a Progressive Pathway to AI Healthcare Assistant

This study is led by Prof. Bin Dong (Beijing International Center for Mathematical Research, Peking University) and Prof. Lin Shen (Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute).

With the onset of the 21st century marked by a staggering growth in artificial intelligence (AI) capabilities, we have witnessed groundbreaking advancements and transformations across various industries. Particularly in the medical field, such transformations are even more pronounced. However, while AI has unveiled countless new opportunities and possibilities for us, it also sheds light on the profound complexity inherent in medical processes. When considering key stages like diagnosis, treatment, and prognosis, the real-world medical data we grapple with is incredibly diverse and intricate. Doctors, when dealing with this data, not only refer to a vast and complicated body of standard medical knowledge but also need to craft individualized treatment plans based on the unique circumstances of each patient. Furthermore, medical examinations are multimodal, encompassing domains like pathology, radiology, and genomics. Faced with such a scenario, integrating this plethora of data and information to form a coherent and comprehensive diagnosis and treatment strategy is undeniably challenging. Most of the current tools are isolated for single tasks, implying that clinical doctors must engage in more holistic analysis and judgment during decision-making. Hence, there’s an urgent need for powerful intelligent assistance tools to aid these physicians. This is precisely what large language models (LLMs), like GPT-4, offer. Not only can they help doctors consolidate and interpret intricate data, but they also provide insights grounded in extensive knowledge,7 thus ensuring more efficient and precise assistance in pivotal stages like diagnosis, treatment, and prognosis.1, 5, 8 With the aid of such intelligent tools, we aspire to delve deeper into a patient’s genuine situation and make more apt and accurate medical decisions.

In this context, LLMs such as GPT-4, ChatGPT, and Claude have gradually made their mark in the medical domain. Taking GPT-4 as an example, its exceptional performance in the United States Medical Licensing Examinations (USMLE) has far exceeded the expectations of many experts. Yet, this is only the tip of the iceberg. While the practical application of LLMs in healthcare is still in its early stages, preliminary research has already unveiled their tremendous potential in specialized medical research and potential clinical decision support. Especially in tasks involving the integration of multimodal medical data from pathology, radiology, and genomics, LLMs have exhibited their unique ability for in-depth interpretation and linkage. Of course, their practical effects and values in real medical environments still require further study and validation. With the introduction of these advanced tools, we not only anticipate efficient consolidation of multisource medical data but also expect AI agents to offer support in predictive analysis and patient management for physicians. For instance, AI agents could assist in analyzing patient histories, laboratory results, and radiological data, subsequently providing data-driven diagnostic suggestions. Moreover, these tools can further help doctors in choosing the optimal treatment plan from a plethora of options, ensuring patients receive individualized and optimal therapeutic outcomes. Through this approach, we can look forward to a medical decision-making process that is not only more scientific but also more systematic, ensuring patients receive the best medical care.

Given the outstanding potential of LLMs in medicine, the study aims to conduct a systematic and progressive review of the recent advances achieved by LLMs in this field. It highlights the use of both general and specialized medical LLMs, primarily focusing on text-based interactions. Traditional unimodal approaches often overlook the complex multimodal nature of the medical field, prompting the development of multimodal LLMs that enhance diagnostic accuracy and efficacy. Despite notable advancements, challenges such as achieving true personalization, maintaining ongoing model updates, and equipping AI with complex problem-solving abilities remain. In this context, LLM-driven autonomous agents emerge as promising tools with diverse applications in healthcare. Moreover, assessing the efficacy and safety of medical LLMs is crucial. This review’s importance lies in shedding light on the current role of LLMs in healthcare, assessing their transformative effects on medical practices, and identifying obstacles to be addressed to fully leverage their potential in enhancing patient care and advancing medical science.

Mingze Yuan, Peng Bao, Jiajia Yuan, Yunhao Shen, Zifan Chen, Yi Xie, Jie Zhao, Quanzheng Li, Yang Chen, Li Zhang, Lin Shen, Bin Dong.
Large language models illuminate a progressive pathway to artificial intelligent healthcare assistant.
Medicine Plus, 2024. doi: 10.1016/j.medp.2024.100030

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...