We may Soon be Able to Detect Cancer with AI

A new paper in Biology Methods & Protocols, published by Oxford University Press, indicates that it may soon be possible for doctors to use artificial intelligence (AI) to detect and diagnose cancer in patients, allowing for earlier treatment. Cancer remains one of the most challenging human diseases, with over 19 million cases and 10 million deaths annually. The evolutionary nature of cancer makes it difficult to treat late-stage tumours.

Genetic information is encoded in DNA by patterns of the four bases - denoted by A, T, G and C - that make up its structure. Environmental changes outside the cell can cause some DNA bases to be modified by adding a methyl group. This process is called "DNA methylation." Each individual cell possesses millions of these DNA methylation marks. Researchers have observed changes to these marks in early cancer development; they could assist in early diagnosis of cancer. It’s possible to examine which bases in DNA are methylated in cancers and to what extent, compared to healthy tissue. Identifying the specific DNA methylation signatures indicative of different cancer types is akin to searching for a needle in a haystack. This is where the researchers involved in this study believe that AI can help.

Investigators from Cambridge University and Imperial College London trained an AI mode, using a combination of machine and deep learning, to look at the DNA methylation patterns and identify 13 different cancer types (including breast, liver, lung, and prostate cancers) from non-cancerous tissue with 98.2% accuracy. This model relies on tissue samples (not DNA fragments in blood) and would need additional training and testing on a more diverse collection of biopsy samples to be ready for clinical use. The researchers here believe that an important aspect of this study was the use of an explainable and interpretable core AI model, which provided insights into the reasoning behind its predictions. The researchers explored the inner workings of their model and showed that the model reinforces and enhances understanding of the underlying processes contributing to cancer.

Identifying these unusual methylation patterns (potentially from biopsies) would allow health care providers to detect cancer early. This could potentially improve patient outcomes dramatically, as most cancers are treatable or curable if detected early enough.

"Computational methods such as this model, through better training on more varied data and rigorous testing in the clinic, will eventually provide AI models that can help doctors with early detection and screening of cancers," said the paper's lead author, Shamith Samarajiwa. "This will provide better patient outcomes."

Newsham I, Sendera M, Jammula SG, Samarajiwa SA.
Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns.
Biol Methods Protoc. 2024 Jun 20;9(1):bpae028. doi: 10.1093/biomethods/bpae028

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...