Mobile Phone Data Helps Track Pathogen Spread and Evolution of Superbugs

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The approach combines a pathogen's genomic data with human travel patterns, taken from anonymised mobile phone data.

Researchers from the Wellcome Sanger Institute, University of the Witwatersrand and National Institute for Communicable Diseases in South Africa, the University of Cambridge, and partners across the Global Pneumococcal Sequencing project, integrated genomic data from nearly 7,000 Streptococcus pneumoniae (pneumococcus) samples collected in South Africa with detailed human mobility data. This enabled them to see how these bacteria, which cause pneumonia and meningitis, move between regions and evolve over time.

The findings, published in Nature, suggest initial reductions in antibiotic resistance linked to the 2009 pneumococcal vaccine may be only temporary, as non-targeted strains resistant to antibiotics such as penicillin gained a 68 per cent competitive advantage.

This is the first time researchers have been able to precisely quantify the fitness - their ability to survive and reproduce - of different pneumococcal strains. The insight could inform vaccine development to target the most harmful strains, and may be applicable to other pathogens.

Many infectious diseases such as tuberculosis, HIV, and COVID-19 exist in multiple strains or variants circulating simultaneously, making them difficult to study. Pneumococcus, a bacterium that is a leading cause of pneumonia, meningitis, and sepsis worldwide, is a prime example with over 100 types and 900 genetic strains globally. Pneumonia alone kills around 740,000 children under the age of five each year, making it the single largest infectious cause of death in children.

Pneumococcal diversity hampers control efforts, as vaccines targeting major strains leave room for others to fill the vacant niches. How these bacteria spread, how vaccines affect their survival, and their resistance to antibiotics remains poorly understood.

In this new study, researchers analysed genome sequences from 6,910 pneumococcus samples collected in South Africa between 2000 and 2014 to track the distribution of different strains over time. They combined these data with anonymised records of human travel patterns collected by Meta.

The team developed computational models which revealed pneumococcal strains take around 50 years to fully mix throughout South Africa's population, largely due to localised human movement patterns.

They found that while introduction of a pneumococcal vaccine against certain types of these bacteria in 2009 reduced the number of cases caused by those types6, it also made other non-targeted strains of these bacteria gain a 68 per cent competitive advantage, with an increasing proportion of them becoming resistant to antibiotics such as penicillin. This suggests that the vaccine-linked protection against antibiotic resistance is short-lived.

Dr Sophie Belman, first author of the study, former PhD student at the Wellcome Sanger Institute and now a Schmidt Science Fellow at the Barcelona Supercomputing Centre, Spain, said: "While we found that pneumococcal bacteria generally spread slowly, the use of vaccines and antimicrobials can quickly and significantly change these dynamics. Our models could be applied to other regions and pathogens to better understand and predict pathogen spread, in the context of drug resistance and vaccine effectiveness."

Dr Anne von Gottberg, author of the study at National Institute for Communicable Diseases, Johannesburg, South Africa, said: "Despite vaccination efforts, pneumonia remains one of the leading causes of death for children under five in South Africa. With continuous genomic surveillance and adaptable vaccination strategies to counter the remarkable adaptability of these pathogens, we may be able to better target interventions to limit the burden of disease."

Professor Stephen Bentley, senior author of the study at the Wellcome Sanger Institute, said: "The pneumococcus's diversity has obscured our view on how any given strain spreads from one region to the next. This integrated approach using bacterial genome and human travel data finally allows us to cut through that complexity, uncovering hidden migratory paths in high-definition for the first time. This could allow researchers to anticipate where emerging high-risk strains may take hold next, putting us a step ahead of potential outbreaks."

Belman S, Lefrancq N, Nzenze S, Downs S, du Plessis M, Lo SW; Global Pneumococcal Sequencing Consortium; McGee L, Madhi SA, von Gottberg A, Bentley SD, Salje H.
Geographical migration and fitness dynamics of Streptococcus pneumoniae.
Nature. 2024 Jul 3. doi: 10.1038/s41586-024-07626-3

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...