AI Speeds Up Heart Scans, Saving Doctors' Time

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve care for patients.

The teams from the Universities of East Anglia (UEA), Sheffield and Leeds created an intelligent computer model that utilises AI to examine heart images from MRI scans in a specific view known as the four-chamber plane.

Lead researcher Dr Pankaj Garg, of the University of East Anglia's Norwich Medical School and a consultant cardiologist at the Norfolk and Norwich University Hospital, heads up a team of researchers who have pioneered innovative and revolutionary 4D MRI imaging technology. This is paving the way for faster, non-invasive and more accurate diagnosis of heart failure and other cardiac conditions.

Dr Garg said: "The AI model precisely determined the size and function of the heart's chambers and demonstrated outcomes comparable to those acquired by doctors manually but much quicker.

"Unlike a standard manual MRI analysis, which can take up to 45 minutes or more, the new AI model takes just a few seconds.

"This automated technique could offer speedy and dependable evaluations of heart health, with the potential to enhance patient care."

The retrospective observational study consisted of data from 814 patients from Sheffield Teaching Hospitals NHS Foundation Trust and Leeds Teaching Hospitals NHS Trust, which was then used to train the AI model.

To make sure the model's results were accurate, scans and data from another 101 patients from the Norfolk and Norwich University Hospitals NHS Foundation Trust were then used for testing.

While other studies have investigated the use of AI in interpreting MRI scans, this latest AI model was trained using data from multiple hospitals and different types of scanners, as well as conducting the testing on a diverse group of patients from a different hospital. In addition, this AI model provides a complete analysis of the entire heart using a view that shows all four chambers, while most earlier studies focused on a view that only looks at the heart's two main chambers.

PhD student Dr Hosamadin Assadi, of UEA’s Norwich Medical School, said: "Automating the process of assessing heart function and structure will save time and resources and ensure consistent results for doctors.

"This innovation could lead to more efficient diagnoses, better treatment decisions, and ultimately, improved outcomes for patients with heart conditions.

"Moreover, the potential of AI to predict mortality based on heart measurements highlights its potential to revolutionise cardiac care and improve patient prognosis."

The researchers say future studies should test the model using larger groups of patients from different hospitals, with various types of MRI scanners, and including other common diseases seen in medical practice to see if it works well in a broader range of real-world situations.

Other recent research from the teams at UEA, Leeds and Sheffield has refined the method of using heart MRI scans for female patients, particularly for those with early or borderline heart disease, which meant that 16.5pc more females were able to be diagnosed.

The research was a collaboration between the University of East Anglia, the University of Leeds, the University of Sheffield, Leiden University Medical Centre, the Norfolk and Norwich University Hospitals NHS Foundation Trust, Sheffield Teaching Hospitals NHS Foundation Trust and Leeds Teaching Hospitals NHS Trust.

The study was supported by funding for Dr Pankaj Garg from the Wellcome Trust Clinical Research Career Development Fellowship.

Assadi H, Alabed S, Li R, Matthews G, Karunasaagarar K, Kasmai B, Nair S, Mehmood Z, Grafton-Clarke C, Swoboda PP, Swift AJ, Greenwood JP, Vassiliou VS, Plein S, van der Geest RJ, Garg P.
Development and validation of AI-derived segmentation of four-chamber cine cardiac magnetic resonance.
Eur Radiol Exp. 2024 Jul 12;8(1):77. doi: 10.1186/s41747-024-00477-7

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...