Off-the-Shelf Wearable Trackers Provide Clinically-Useful Information for Patients with Heart Disease

Monitoring of heart rate and physical activity using consumer wearable devices was found to have clinical value for comparing the response to two treatments for atrial fibrillation and heart failure.

The study published in Nature Medicine examined if a commercially-available fitness tracker and smartphone could continuously monitor the response to medications, and provide clinical information similar to in-person hospital assessment.

The wearable devices, consisting of a wrist band and connected smartphone, collected a vast amount of data on the response to two different medications prescribed as part of a clinical trial called RATE-AF, funded by the National Institute for Health and Care Research (NIHR).

Led by researchers from the cardAIc group at the University of Birmingham, the team used artificial intelligence to help analyse over 140 million datapoints for heart rate in 53 individuals over 20 weeks. They found that digoxin and beta-blockers had a similar effect on heart rate, even after accounting for differences in physical activity. This was in contrast to previous studies that had only assessed the short-term impact of digoxin.

A neural network that took account of missing information was developed to avoid an over-optimistic view of the wearable data stream. Using this approach, the team found that the wearables were equivalent to standard tests often used in hospitals and clinical trials that require staff time and resources. The average age of participants in the study was 76 years, highlighting possible future value regardless of age or experience with technology.

Professor Dipak Kotecha from the Institute of Cardiovascular Sciences at the University of Birmingham and the lead author of the study said:

"People across the world are increasingly using wearable devices in their daily lives to help monitor their activity and health status. This study shows the potential to use this new technology to assess the response to treatment and make a positive contribution to the routine care of patients."

"Heart conditions such as atrial fibrillation and heart failure are expected to double in prevalence over the next few decades, leading to a large burden on patients as well as substantial healthcare cost. This study is an exciting showcase for how artificial intelligence can support new ways to help treat patients better."

The study was funded as part of the BigData@Heart consortium from the European Union’s Innovative Medicines Initiative. The RATE-AF trial was funded by the UK National Institute for Health and Care Research.

Gill SK, Barsky A, Guan X, Bunting KV, Karwath A, Tica O, Stanbury M, Haynes S, Folarin A, Dobson R, Kurps J, Asselbergs FW, Grobbee DE, Camm AJ, Eijkemans MJC, Gkoutos GV, Kotecha D; BigData@Heart Consortium; cardAIc group; RATE-AF trial team.
Consumer wearable devices for evaluation of heart rate control using digoxin versus beta-blockers: the RATE-AF randomized trial.
Nat Med. 2024 Jul;30(7):2030-2036. doi: 10.1038/s41591-024-03094-4

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...