New AI Tool Predicts Risk for Chronic Pain in Cancer Patients

A third of cancer patients face chronic pain - a debilitating condition that can dramatically reduce a person's quality of life, even if their cancer goes into remission.

Although doctors have some tools for addressing chronic pain, figuring out who is most at risk for developing it is no easy feat. But a new study, conducted by researchers at the University of Florida and other institutions, uses artificial intelligence (AI) to predict which breast cancer patients are most at risk for developing chronic pain. The predictive model could help doctors address underlying conditions that contribute to making pain chronic and ultimately lead to more effective treatments.

"We want to understand the factors that lead someone from having cancer to having chronic pain and how can we better manage these factors," said Lisiane Pruinelli, Ph.D., M.S., R.N., FAMIA, the senior author of the new study and a professor of family, community, and health systems science in the UF College of Nursing. "Our goal is to link this information to some profile of patients so we can identify early on what patients are at risk for developing chronic pain."

The findings of the study were published on July 26 in the Journal of Nursing Scholarship. The authors included Pruinelli, Jung In Park, Ph.D., R.N., FAMIA, of the University of California, Irvine, and Steven Johnson, Ph.D., of the University of Minnesota.

The results showed that, when built with detailed data on more than 1,000 breast cancer patients, the AI model could correctly predict which patients would develop chronic pain more than 80% of the time. The leading factors that were associated with chronic pain included anxiety and depression, previous cancer diagnoses, and certain infections.

Implementing a model like this in doctors' offices would require integrating it into the electronic healthcare records systems that are now ubiquitous in clinics, which would take more research. The researchers said the rise of AI has the potential to help doctors tailor their treatments to a patient's unique disease characteristics.

"Now with the amount of data we have, and with the use of artificial intelligence, we can actually personalize treatments based on patient needs and how they would respond to that treatment," Pruinelli said.

The study was based on the large amount of data made available by the All of Us Research Program, a nationwide research campaign from the National Institutes of Health that seeks to collect anonymized healthcare records from 1 million Americans.

"This wouldn't be possible if we didn't have people contributing their data," Pruinelli said.

Park JI, Johnson S, Pruinelli L.
Optimizing pain management in breast cancer care: Utilizing 'All of Us' data and deep learning to identify patients at elevated risk for chronic pain.
J Nurs Scholarsh. 2024 Jul 26. doi: 10.1111/jnu.13009

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...