Generative AI can Not yet Reliably Read and Extract Information from Clinical Notes in Medical Records

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care or research. But recent research from Columbia University Mailman School of Public Health using ChatGPT-4 to read medical notes from Emergency Department admissions to determine whether injured scooter and bicycle riders were wearing a helmet finds that LLM can't yet do this reliably. The findings are published in JAMA Network Open.

In a study of 54,569 emergency department visits among patients injured while riding a bicycle, scooter or other micromobility conveyance from 2019 to 2022, the AI LLM had difficulty replicating results of a text string–search based approach for extracting helmet status from clinical notes. The LLM only performed well when the prompt included all of the text used in the text string search-based approach. The LLM also had difficulty replicating its work across trials on each of five successive days, it did better t replicating its hallucinations than its accurate work. It particularly struggled when phrases were negated, such as reading "w/o helmet" or "unhelmeted" and reporting that the patient wore a helmet.

Large amounts of medically relevant data are included in electronic medical records in the form of written clinical notes, a type of unstructured data. Efficient ways to read and extract information from these notes would be extremely useful for research. Currently information from these clinical notes can be extracted using simple string-matching text search approaches or through more sophisticated artificial intelligence (AI)-based approaches such as natural language processing. The hope was that new LLM, such as ChatGPT-4, could extract information faster and more reliably.

"While we see potential efficiency gains in using the generative AI LLM for information extraction tasks, issues of reliability and hallucinations currently limit its utility," said Andrew Rundle, DrPH, professor of Epidemiology at Columbia Mailman School and senior author. "When we used highly detailed prompts that included all of the text strings related to helmets, on some days ChatGPT-4 could extract accurate data from the clinical notes. But the time required to define and test all of the text that had to be included in the prompt and ChatGPT-4's inability to replicate its work, day after day, indicates to us that ChatGPT-4 was not yet up to this task."

Using publicly available 2019 to 2022 data from the U.S. Consumer Product Safety Commission's National Electronic Injury Surveillance System, a sample of 96 U.S. hospitals, Rundle and colleagues analyzed emergency department records of patients injured in e-bike, bicycle, hoverboard, and powered scooter accidents. They compared the results of ChatGPT-4's analyses of the records to data generated using more traditional text-string-based searches, and for 400 records, they compared ChatGPT's analyses to their own reading of the clinical notes in the records.

This research builds on their work studying how to prevent injuries among micromobility users (i.e. bicyclists, e-bike riders, scooter riders). "Helmet use is a key factor in injury severity, yet in most emergency department medical records and incident reports information on helmet use is buried in the clinical notes written by the physician or EMS respondent. There is a significant research need to be able to reliably and efficiently access this information." said Kathryn Burford, the lead author on the paper and a post-doctoral fellow in the Department of Epidemiology at the Mailman School.

"Our study examined the potential of an LLM for extracting information from clinical notes, a rich source of information for health professionals and researchers," said Rundle. "But at the time we used ChatGPT-4 it could not reliably provide us with data."

Burford KG, Itzkowitz NG, Ortega AG, Teitler JO, Rundle AG.
Use of Generative AI to Identify Helmet Status Among Patients With Micromobility-Related Injuries From Unstructured Clinical Notes.
JAMA Netw Open. 2024 Aug 1;7(8):e2425981. doi: 10.1001/jamanetworkopen.2024.25981

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...