Generative AI can Not yet Reliably Read and Extract Information from Clinical Notes in Medical Records

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care or research. But recent research from Columbia University Mailman School of Public Health using ChatGPT-4 to read medical notes from Emergency Department admissions to determine whether injured scooter and bicycle riders were wearing a helmet finds that LLM can't yet do this reliably. The findings are published in JAMA Network Open.

In a study of 54,569 emergency department visits among patients injured while riding a bicycle, scooter or other micromobility conveyance from 2019 to 2022, the AI LLM had difficulty replicating results of a text string–search based approach for extracting helmet status from clinical notes. The LLM only performed well when the prompt included all of the text used in the text string search-based approach. The LLM also had difficulty replicating its work across trials on each of five successive days, it did better t replicating its hallucinations than its accurate work. It particularly struggled when phrases were negated, such as reading "w/o helmet" or "unhelmeted" and reporting that the patient wore a helmet.

Large amounts of medically relevant data are included in electronic medical records in the form of written clinical notes, a type of unstructured data. Efficient ways to read and extract information from these notes would be extremely useful for research. Currently information from these clinical notes can be extracted using simple string-matching text search approaches or through more sophisticated artificial intelligence (AI)-based approaches such as natural language processing. The hope was that new LLM, such as ChatGPT-4, could extract information faster and more reliably.

"While we see potential efficiency gains in using the generative AI LLM for information extraction tasks, issues of reliability and hallucinations currently limit its utility," said Andrew Rundle, DrPH, professor of Epidemiology at Columbia Mailman School and senior author. "When we used highly detailed prompts that included all of the text strings related to helmets, on some days ChatGPT-4 could extract accurate data from the clinical notes. But the time required to define and test all of the text that had to be included in the prompt and ChatGPT-4's inability to replicate its work, day after day, indicates to us that ChatGPT-4 was not yet up to this task."

Using publicly available 2019 to 2022 data from the U.S. Consumer Product Safety Commission's National Electronic Injury Surveillance System, a sample of 96 U.S. hospitals, Rundle and colleagues analyzed emergency department records of patients injured in e-bike, bicycle, hoverboard, and powered scooter accidents. They compared the results of ChatGPT-4's analyses of the records to data generated using more traditional text-string-based searches, and for 400 records, they compared ChatGPT's analyses to their own reading of the clinical notes in the records.

This research builds on their work studying how to prevent injuries among micromobility users (i.e. bicyclists, e-bike riders, scooter riders). "Helmet use is a key factor in injury severity, yet in most emergency department medical records and incident reports information on helmet use is buried in the clinical notes written by the physician or EMS respondent. There is a significant research need to be able to reliably and efficiently access this information." said Kathryn Burford, the lead author on the paper and a post-doctoral fellow in the Department of Epidemiology at the Mailman School.

"Our study examined the potential of an LLM for extracting information from clinical notes, a rich source of information for health professionals and researchers," said Rundle. "But at the time we used ChatGPT-4 it could not reliably provide us with data."

Burford KG, Itzkowitz NG, Ortega AG, Teitler JO, Rundle AG.
Use of Generative AI to Identify Helmet Status Among Patients With Micromobility-Related Injuries From Unstructured Clinical Notes.
JAMA Netw Open. 2024 Aug 1;7(8):e2425981. doi: 10.1001/jamanetworkopen.2024.25981

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...