Vision-Based ChatGPT Shows Deficits Interpreting Radiologic Images

Researchers evaluating the performance of ChatGPT-4 Vision found that the model performed well on text-based radiology exam questions but struggled to answer image-related questions accurately. The study's results were published today in Radiology, a journal of the Radiological Society of North America (RSNA).

Chat GPT-4 Vision is the first version of the large language model that can interpret both text and images.

"ChatGPT-4 has shown promise for assisting radiologists in tasks such as simplifying patient-facing radiology reports and identifying the appropriate protocol for imaging exams," said Chad Klochko, M.D., musculoskeletal radiologist and artificial intelligence (AI) researcher at Henry Ford Health in Detroit, Michigan. "With image processing capabilities, GPT-4 Vision allows for new potential applications in radiology."

For the study, Dr. Klochko’s research team used retired questions from the American College of Radiology’s Diagnostic Radiology In-Training Examinations, a series of tests used to benchmark the progress of radiology residents. After excluding duplicates, the researchers used 377 questions across 13 domains, including 195 questions that were text-only and 182 that contained an image.

GPT-4 Vision answered 246 of the 377 questions correctly, achieving an overall score of 65.3%. The model correctly answered 81.5% (159) of the 195 text-only queries and 47.8% (87) of the 182 questions with images.

"The 81.5% accuracy for text-only questions mirrors the performance of the model’s predecessor," he said. "This consistency on text-based questions may suggest that the model has a degree of textual understanding in radiology."

Genitourinary radiology was the only subspecialty for which GPT-4 Vision performed better on questions with images (67%, or 10 of 15) than text-only questions (57%, or 4 of 7). The model performed better on text-only questions in all other subspecialties.

The model performed best on image-based questions in the chest and genitourinary subspecialties, correctly answering 69% and 67% of the image-containing questions, respectively. The model performed lowest on image-containing questions in the nuclear medicine domain, correctly answering only 2 of 10 questions.

The study also evaluated the impact of various prompts on the performance of GPT-4 Vision.

  • Original: You are taking a radiology board exam. Images of the questions will be uploaded. Choose the correct answer for each question.
  • Basic: Choose the single best answer in the following retired radiology board exam question.
  • Short instruction: This is a retired radiology board exam question to gauge your medical knowledge. Choose the single best answer letter and do not provide any reasoning for your answer.
  • Long instruction: You are a board-certified diagnostic radiologist taking an examination. Evaluate each question carefully and if the question additionally contains an image, please evaluate the image carefully in order to answer the question. Your response must include a single best answer choice. Failure to provide an answer choice will count as incorrect.
  • Chain of thought: You are taking a retired board exam for research purposes. Given the provided image, think step by step for the provided question.

Although the model correctly answered 183 of 265 questions with a basic prompt, it declined to answer 120 questions, most of which contained an image.

"The phenomenon of declining to answer questions was something we hadn’t seen in our initial exploration of the model," Dr. Klochko said.

The short instruction prompt yielded the lowest accuracy (62.6%).

On text-based questions, chain-of-thought prompting outperformed long instruction by 6.1%, basic by 6.8%, and original prompting style by 8.9%. There was no evidence to suggest performance differences between any two prompts on image-based questions.

"Our study showed evidence of hallucinatory responses when interpreting image findings," Dr. Klochko said. "We noted an alarming tendency for the model to provide correct diagnoses based on incorrect image interpretations, which could have significant clinical implications."

Dr. Klochko said his study’s findings underscore the need for more specialized and rigorous evaluation methods to assess large language model performance in radiology tasks.

"Given the current challenges in accurately interpreting key radiologic images and the tendency for hallucinatory responses, the applicability of GPT-4 Vision in information-critical fields such as radiology is limited in its current state," he said.

Hayden N, Gilbert S, Poisson LM, Griffith B, Klochko C.
Performance of GPT-4 with Vision on Text- and Image-based ACR Diagnostic Radiology In-Training Examination Questions.
Radiology. 2024 Sep;312(3):e240153. doi: 10.1148/radiol.240153

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...