New AI-Driven Tool could Revolutionize Brain Pressure Monitoring in Intensive Care Patients

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure in the brain can lead to severe outcomes like strokes and hemorrhages.

The new approach, driven by artificial intelligence (AI), offers a safer and faster alternative to the current gold standard of drilling into the skull. Details were reported in the September 5 online issue of npj Digital Medicine.

Currently, detecting and monitoring elevated brain pressure requires invasive procedures that breach the skull. Instead, the research team explored whether intracranial pressure could be predicted by analyzing noninvasive waveform data, such as electrocardiograms, oxygen saturation levels from pulse oximetry, and waveforms obtained from routine head ultrasounds in critical care patients.

They then developed an AI model capable of generating a representation of brain blood pressure. This model was trained using de-identified patient data from those who had their intracranial pressure measured through invasive methods, such as lumbar catheters or pressure-sensitive probes inserted into the skull. The real-time monitoring tool allows for swift detection of critical changes, enabling health care providers to intervene more quickly and potentially save lives, say the investigators.

"Increased pressure in the brain can lead to a range of serious complications. We created a noninvasive approach - an AI-derived biomarker for detecting elevated brain pressure - using data already routinely collected in intensive care units (ICUs)," says first author Faris Gulamali, an MD candidate at Icahn Mount Sinai. "Importantly, our study, the largest to date on intracranial hypertension, is the first to provide external validation for our algorithm and demonstrate a direct link between the biomarker and clinical outcomes, which is required for FDA approval."

The study, a retrospective analysis, used data from two hospitals in different U.S. cities. The tool showed strong performance in detecting intracranial pressure within seconds. Over the course of a patient's admission, being in the top 25 percent of intracranial pressure measurements was linked to a 24-fold increase in the risk of a subdural hemorrhage and a seven-fold increase in the likelihood of needing a craniectomy (a surgical procedure to relieve pressure on the brain).

The researchers note that the data linking to clinical outcomes is correlational and not causative, and further research is needed to fully establish causality. Next, they plan to conduct further validation studies, including those focused on identifying patients with neurological conditions in the ICU. Additionally, they hope to apply for breakthrough device status with the FDA, possibly bringing this life-saving technology closer to widespread clinical use.

"Our vision is to integrate this tool into ICUs as a standard part of monitoring critically ill patients. This technology represents a major leap forward, potentially transforming how we manage critically ill patients, reducing the need for risky procedures and enabling faster responses to neurological emergencies," says senior author Girish Nadkarni, MD, PhD, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief, Division of Data-Driven and Digital Medicine. "In addition, our findings suggest it could be a valuable tool not only in neurology but also in managing other severe health conditions, such as post-cardiac arrest, glaucoma, and acute liver failure."

"Our team's development of this AI-driven clinical decision support tool could be a significant step forward in advancing health outcomes for critically ill patients. If we can validate the use of this tool, we have the potential to improve patient safety by fine-tuning the use of invasive intracranial invasive monitoring in patients with the greatest potential for benefit," says study co-author David L. Reich, MD, President of The Mount Sinai Hospital and Mount Sinai Queens, the Horace W. Goldsmith Professor of Anesthesiology, and Professor of Artificial Intelligence and Human Health at Icahn Mount Sinai. "One of our goals at Mount Sinai is using technology to bring the right team to the right patient at the right time. This tool exemplifies that commitment, offering a tailored solution that has the potential to improve the standard of care for patients at risk of life-threatening brain injuries."

Gulamali F, Jayaraman P, Sawant AS, Desman J, Fox B, Chang A, Soong BY, Arivazagan N, Reynolds AS, Duong SQ, Vaid A, Kovatch P, Freeman R, Hofer IS, Sakhuja A, Dangayach NS, Reich DS, Charney AW, Nadkarni GN.
Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension.
NPJ Digit Med. 2024 Sep 5;7(1):233. doi: 10.1038/s41746-024-01227-0

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...