Wearable Cameras Allow AI to Detect Medication Errors

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery.

In a test whose results were published today, the video system recognized and identified, with high proficiency, which medications were being drawn in busy clinical settings. The AI achieved 99.6% sensitivity and 98.8% specificity at detecting vial-swap errors.

The findings are reported Oct. 22 in npj Digital Medicine.

The system could become a critical safeguard, especially in operating rooms, intensive-care units and emergency-medicine settings, said co-lead author Dr. Kelly Michaelsen, an assistant professor of anesthesiology and pain medicine at the University of Washington School of Medicine.

"The thought of being able to help patients in real time or to prevent a medication error before it happens is very powerful," she said. "One can hope for a 100% performance but even humans cannot achieve that. In a survey of more than 100 anesthesia providers, the majority desired the system to be more than 95% accurate, which is a goal we achieved."

Drug administration errors are the most frequently reported critical incidents in anesthesia, and the most common cause of serious medical errors in intensive care. In the bigger picture, an estimated 5% to 10% of all drugs given are associated with errors. Adverse events associated with injectable medications are estimated to affect 1.2 million patients annually at a cost of $5.1 billion.

Syringe and vial-swap errors most often occur during intravenous injections in which a clinician must transfer the medication from vial to syringe to the patient. About 20% of mistakes are substitution errors in which the wrong vial is selected or a syringe is mislabeled. Another 20% of errors occur when the drug is labeled correctly but administered in error.

Safety measures, such as a barcode system that quickly reads and confirms a vial’s contents, are in place to guard against such accidents. But practitioners might sometimes forget this check during high-stress situations because it is an extra step in their workflow.

The researchers’ aim was to build a deep-learning model that, paired with a GoPro camera, is sophisticated enough to recognize the contents of cylindrical vials and syringes, and to appropriately render a warning before the medication enters the patient.

Training the model took months. The investigators collected 4K video of 418 drug draws by 13 anesthesiology providers in operating rooms where setups and lighting varied. The video captured clinicians managing vials and syringes of select medications. These video snippets were later logged and the contents of the syringes and vials denoted to train the model to recognize the contents and containers.

The video system does not directly read the wording on each vial, but scans for other visual cues: vial and syringe size and shape, vial cap color, label print size.

"It was particularly challenging, because the person in the OR is holding a syringe and a vial, and you don’t see either of those objects completely. Some letters (on the syringe and vial) are covered by the hands. And the hands are moving fast. They are doing the job. They aren’t posing for the camera," said Shyam Gollakota, a coauthor of the paper and professor at the UW's Paul G. Allen School of Computer Science & Engineering.

Further, the computational model had to be trained to focus on medications in the foreground of the frame and to ignore vials and syringes in the background.

"AI is doing all that: detecting the specific syringe that the healthcare provider is picking up, and not detecting a syringe that is lying on the table," Gollakota said.

This work shows that AI and deep learning have potential to improve safety and efficiency across a number of healthcare practices. Researchers are just beginning to probe the potential, Michaelsen said.

The study also included researchers from Carnegie Mellon University and Makerere University in Uganda. The Toyota Research Institute built and tested the system.

The Washington Research Foundation, Foundation for Anesthesia Education and Research, and a National Institutes of Health grant (K08GM153069) funded the work.

Chan J, Nsumba S, Wortsman M, Dave A, Schmidt L, Gollakota S, Michaelsen K.
Detecting clinical medication errors with AI enabled wearable cameras.
NPJ Digit Med. 2024 Oct 22;7(1):287. doi: 10.1038/s41746-024-01295-2

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...