New AI Tool Predicts Protein-Protein Interaction Mutations in Hundreds of Diseases

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication.

The computational tool is called PIONEER (Protein-protein InteractiOn iNtErfacE pRediction). Researchers demonstrated PIONEER's utility by identifying potential drug targets for dozens of cancers and other complex diseases in a recently published Nature Biotechnology article.

Genomic research is key in drug discovery, but it is not always enough on its own, says Feixiong Cheng, PhD, study co-lead author and director of Cleveland Clinic’s Genome Center. When it comes to making medications based on genomic data, the average time between discovering a disease-causing gene and entering clinical trials is 10-15 years.

"In theory, making new medicines based on genetic data is straightforward: mutated genes make mutated proteins," Dr. Cheng says. "We try to create molecules that stop these proteins from disrupting critical biological processes by blocking them from interacting with healthy proteins, but in reality, that is much easier said than done."

One protein in our body can interact with hundreds of other proteins in many different ways. Those proteins can then interact with hundreds more, forming a complex network of protein-protein interactions called the interactome, Dr. Cheng explains. This becomes even more complicated when disease-causing DNA mutations are introduced into the mix. Some genes can be mutated in many ways to cause the same disease, meaning one condition can be associated with many interactomes arising from just one differently mutated protein.

Drug developers are left with tens of thousands of potential disease-causing interactions to pick from – and that’s only after they generate the list based on the affected protein's physical structures.

Dr. Cheng sought to make an artificial intelligence (AI) tool to help genetic/genomic researchers and drug developers identify the most promising protein-protein interactions more easily, teaming up with Haiyuan Yu, PhD, director of the Cornell University Center for Innovative Proteomics. The group integrated massive amounts of data from multiple sources including:

  • Genomic sequences from almost 100,000 individuals who were either born with disease-causing mutations or acquired them later in life (usually cancer).
  • Physical three-dimensional structures of over 16,000 human proteins, and data on how DNA mutations impact those structures.
  • Known interactions between almost 300,000 different protein-protein pairs.
  • Their resulting database allows researchers to navigate the interactome for more than 10,500 diseases, from alopecia to von Willebrand Disease.

Researchers who identified a disease-associated mutation can input it into PIONEER to receive a ranked list of protein-protein interactions that contribute to the disease and can potentially be treated with a drug. Scientists can search for a disease by name to receive a list of potential disease-causing protein interactions that they can then go on to research. PIONEER is designed to help biomedical researchers who specialize in almost any disease across categories including autoimmune, cancer, cardiovascular, metabolic, neurological and pulmonary.

The team validated their database's predictions in the lab, where they made almost 3,000 mutations on over 1,000 proteins and tested their impact on almost 7,000 protein-protein interaction pairs. Preliminary research based on these findings is already underway to develop and test treatments for lung and endometrial cancers. The team also demonstrated that their model’s protein-protein interaction mutations can predict:

  • Survival rates and prognoses for various cancer types, including sarcoma, a rare but potentially deadly cancer.
  • Anti-cancer drug responses in large pharmacogenomics databases.

The researchers also experimentally validated that protein-protein interaction mutations between the proteins NRF2 and KEAP1 can predict tumor growth in lung cancer, offering a novel target for targeted cancer therapeutic development.

"The resources needed to conduct interactome studies poses a significant barrier to entry for most genetic researchers," says Dr. Cheng. "We hope PIONEER can overcome these barriers computationally to lessen the burden and grant more scientists with the ability to advance new therapies."

Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H.
A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations.
Nat Biotechnol. 2024 Oct 24. doi: 10.1038/s41587-024-02428-4

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...