New AI Tool Predicts Protein-Protein Interaction Mutations in Hundreds of Diseases

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication.

The computational tool is called PIONEER (Protein-protein InteractiOn iNtErfacE pRediction). Researchers demonstrated PIONEER's utility by identifying potential drug targets for dozens of cancers and other complex diseases in a recently published Nature Biotechnology article.

Genomic research is key in drug discovery, but it is not always enough on its own, says Feixiong Cheng, PhD, study co-lead author and director of Cleveland Clinic’s Genome Center. When it comes to making medications based on genomic data, the average time between discovering a disease-causing gene and entering clinical trials is 10-15 years.

"In theory, making new medicines based on genetic data is straightforward: mutated genes make mutated proteins," Dr. Cheng says. "We try to create molecules that stop these proteins from disrupting critical biological processes by blocking them from interacting with healthy proteins, but in reality, that is much easier said than done."

One protein in our body can interact with hundreds of other proteins in many different ways. Those proteins can then interact with hundreds more, forming a complex network of protein-protein interactions called the interactome, Dr. Cheng explains. This becomes even more complicated when disease-causing DNA mutations are introduced into the mix. Some genes can be mutated in many ways to cause the same disease, meaning one condition can be associated with many interactomes arising from just one differently mutated protein.

Drug developers are left with tens of thousands of potential disease-causing interactions to pick from – and that’s only after they generate the list based on the affected protein's physical structures.

Dr. Cheng sought to make an artificial intelligence (AI) tool to help genetic/genomic researchers and drug developers identify the most promising protein-protein interactions more easily, teaming up with Haiyuan Yu, PhD, director of the Cornell University Center for Innovative Proteomics. The group integrated massive amounts of data from multiple sources including:

  • Genomic sequences from almost 100,000 individuals who were either born with disease-causing mutations or acquired them later in life (usually cancer).
  • Physical three-dimensional structures of over 16,000 human proteins, and data on how DNA mutations impact those structures.
  • Known interactions between almost 300,000 different protein-protein pairs.
  • Their resulting database allows researchers to navigate the interactome for more than 10,500 diseases, from alopecia to von Willebrand Disease.

Researchers who identified a disease-associated mutation can input it into PIONEER to receive a ranked list of protein-protein interactions that contribute to the disease and can potentially be treated with a drug. Scientists can search for a disease by name to receive a list of potential disease-causing protein interactions that they can then go on to research. PIONEER is designed to help biomedical researchers who specialize in almost any disease across categories including autoimmune, cancer, cardiovascular, metabolic, neurological and pulmonary.

The team validated their database's predictions in the lab, where they made almost 3,000 mutations on over 1,000 proteins and tested their impact on almost 7,000 protein-protein interaction pairs. Preliminary research based on these findings is already underway to develop and test treatments for lung and endometrial cancers. The team also demonstrated that their model’s protein-protein interaction mutations can predict:

  • Survival rates and prognoses for various cancer types, including sarcoma, a rare but potentially deadly cancer.
  • Anti-cancer drug responses in large pharmacogenomics databases.

The researchers also experimentally validated that protein-protein interaction mutations between the proteins NRF2 and KEAP1 can predict tumor growth in lung cancer, offering a novel target for targeted cancer therapeutic development.

"The resources needed to conduct interactome studies poses a significant barrier to entry for most genetic researchers," says Dr. Cheng. "We hope PIONEER can overcome these barriers computationally to lessen the burden and grant more scientists with the ability to advance new therapies."

Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H.
A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations.
Nat Biotechnol. 2024 Oct 24. doi: 10.1038/s41587-024-02428-4

Most Popular Now

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...