Research Study Shows the Cost-Effectiveness of AI-Enhanced Heart Failure Screening

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings published in Mayo Clinic Proceedings: Digital Health suggest that this type of screening is also cost-effective in the long term, especially in outpatient settings.

Incremental drops in heart function are treatable with medication but can be hard to spot. Patients may or may not have symptoms when their heart is not pumping effectively, and doctors may not order an echocardiogram or other diagnostic test to check ejection fraction unless there are symptoms. Peter Noseworthy, M.D., a Mayo Clinic cardiologist and co-author of the study, notes that using AI to catch the hidden signals of heart failure during a routine visit can mean earlier treatment for patients, delaying or stopping disease progression, and fewer related medical costs over time.

According to the study, the cost-effectiveness ratio of using AI-ECG was $27,858 per quality-adjusted life year - a measure of the quality of life and years lived. The program was especially cost-effective in outpatient settings, with a much lower cost-effectiveness ratio of $1,651 per quality-adjusted life year.

The researchers studied the economic impact of using the AI-ECG tool by using real-world information from 22,000 participants in the established EAGLE trial and following which patients had weak heart pumps and which did not. They simulated the progression of disease in the longer term, assigning values for the health burden on patients and the resulting effect on economic value.

"We categorized patients as either AI-ECG positive, meaning we would recommend further testing for low ejection fraction, or AI-ECG negative with no further tests needed. Then we followed the normal path of care and looked at what that would cost. Did they have an echocardiogram? Did they stay healthy or develop heart failure later and need hospitalization? We considered different scenarios, costs and patient outcomes," says Xiaoxi Yao, Ph.D., a professor of Health Services Research at Mayo Clinic.

Dr. Yao, who is the senior author of the study, notes that cost-effectiveness is an important aspect of the evaluation of AI technologies when considering what to implement in clinical practice.

"We know that earlier diagnosis can lead to better and more cost-effective treatment options. To get there, we have been establishing a framework for AI evaluation and implementation. The next step is finding ways to streamline this process so we can reduce the time and resources required for such rigorous evaluation," says Dr. Yao.

This study was funded by Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery. Mayo Clinic and some of the researchers have a financial interest in the technology referenced in this news release. Mayo Clinic will use any revenue it receives to support its not-for-profit mission in patient care, education and research.

Viengneesee Thao, Ye Zhu, Andrew S Tseng, Jonathan W Inselman, Bijan J Borah, Rozalina G McCoy, Zachi I Attia, Francisco Lopez-Jimenez, Patricia A Pellikka, David R Rushlow, Paul A Friedman, Peter A Noseworthy, Xiaoxi Yao.
Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial.
Mayo Clinic Proceedings: Digital Health, 2024. doi: 10.1016/j.mcpdig.2024.10.001

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...