AI-Based Chatbot Created for Bioimage Analysis

Scientists from Universidad Carlos III de Madrid (UC3M), together with a research team from Ericsson and the KTH Royal Institute of Technology in Sweden, have developed an artificial intelligence-based software programme that can search for information and make recommendations for biomedical image analysis. This innovation streamlines the work of individuals using large bioimage databases, including life sciences researchers, workflow developers, and biotech and pharmaceutical companies.

The new assistant, called the BioImage.IO Chatbot and introduced in the journal Nature Methods, was developed as a response to the issue of information overload faced by some researchers. “We realised that many scientists have to process large volumes of technical documentation, which can become a tedious and overwhelming task,” explains Caterina Fuster Barceló, a researcher in the Department of Bioengineering at UC3M and one of the study's authors. “Our goal was to facilitate access to data information while providing a simple interface that allows scientists to focus their time on bioimage analysis rather than programming,” she adds.

The chatbot can be a very useful tool, enabling researchers to perform complex image analysis tasks in a simple and intuitive manner. For example, if a researcher needs to process microscopy images using segmentation models, the chatbot can help select and execute the appropriate model.

The assistant is based on extensive language models and employs a technique called Retrieval-Augmented Generation (RAG), which enables real-time access to databases. "The main advantage is that we do not train the model with specific information; instead, we extract it from up-to-date sources, minimising errors known as ‘hallucinations’, which are common inaccuracies in other AI models like ChatGPT," adds Arrate Muñoz Barrutia, professor in the Department of Bioengineering at UC3M and another author of the study. "This ensures the user receives truthful and contextualised information, which is the most important thing for us."

The BioImage.IO Chatbot has additional advantages, as it is also optimised to work directly with microscopes and other laboratory equipment through an extension system that allows researchers to control these devices using simple commands sent directly from the chatbot interface. "Another benefit of our assistant is that it is open-source,” notes Muñoz Barrutia, “allowing other developers to continue creating new modules and improving the tool."

The model was refined by these UC3M researchers in collaboration with Ericsson Inc and with significant contributions from Wanlu Lei, Gabriel Reder and Wei Ouyang at KTH’s Departments of Intelligent Systems and Applied Physics, respectively. Team members recently presented it at the I2K (From Images to Knowledge) 2024 congress held in Milan, Italy. This team has successfully integrated the chatbot into cloud-based platforms running on web browsers, enabling real-time database queries for image analysis. According to Fuster-Barceló, this extensibility is one of the chatbot’s major advantages, as it facilitates integration into different workflows, including third-party websites and other research systems.

As for the next steps, the researchers plan to enhance the chatbot's capabilities with a more versatile AI model, capable of reading scientific articles and assisting in experiment planning. This could pave the way for advanced automation in research settings and, perhaps, greater democratisation in access to complex scientific tools, they conclude.

Lei W, Fuster-Barceló C, Reder G, Muñoz-Barrutia A, Ouyang W.
BioImage.IO Chatbot: a community-driven AI assistant for integrative computational bioimaging.
Nat Methods. 2024 Aug;21(8):1368-1370. doi: 10.1038/s41592-024-02370-y

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...