New Biomarkers to Detect Colorectal Cancer

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer.

In a paper published in Frontiers in Oncology, researchers analysed one of the largest UK Biobank dataset of protein profiles from healthy individuals and colorectal cancer patients and highlighted three proteins - TFF3, LCN2, and CEACAM5 - as important markers linked to cell adhesion and inflammation, processes closely associated with cancer development. The next steps would require further validation of these biomarkers and then they may be developed into new diagnostic tools.

Three different machine learning models and artificial intelligence (AI) are used to recognise patterns in data.

Dr Animesh Acharjee, from the Department of Cancer and Genomic Sciences & Deputy Programme Director, MSc in Health Data Science (Dubai) who led the study said:

"Colorectal cancer is a leading cause of cancer-related deaths worldwide and it is predicted to increase in incidence over coming decades. This increase highlights the need for reliable tools to diagnose and predict the disease, especially since earlier detection allows for more effective treatment.

"This study results offer valuable insight for identifying potential biomarkers in future proteomic studies and it is hoped this knowledge will eventually help improve treatments for patients with colorectal cancer.

"In our study, we used advanced machine learning and artificial intelligence (AI) models combined with protein network analysis to identify key protein biomarkers that could aid in diagnosing colorectal cancer. The biomarkers show promise but further large-scale validation study is needed to look into the relationships and mechanistic properties of these potential new biomarkers."

Colorectal cancer is the fourth most common cancer in the UK, with around 44,100 people are diagnosed each year. This type of cancer occurs when abnormal cells start to divide and grow in an uncontrolled way, affects the large bowel, which is made up of the colon and rectum.

Currently, diagnosis involves a doctor removing tissue from the bowel and sending a sample of cells to the laboratory for various tests that can identify cancer and indicate which treatments may work best. Any advances that can help pick up colorectal cancer sooner and in a way that is more straightforward for patients would be welcomed.

Radhakrishnan SK, Nath D, Russ D, Merodio LB, Lad P, Daisi FK, Acharjee A.
Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data.
Front Oncol. 2025 Jan 7;14:1505675. doi: 10.3389/fonc.2024.1505675

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...