Deep Learning Model Helps Detect Lung Tumors on CT

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA). The findings of the study could have important implications for lung cancer treatment.

According to the American Cancer Society, lung cancer is the second most common cancer among men and women in the U.S. and the leading cause of cancer death.

Accurate detection and segmentation of lung tumors on CT scans is critical for monitoring cancer progression, evaluating treatment responses and planning radiation therapy. Currently, experienced clinicians manually identify and segment lung tumors on medical images, a labor-intensive process that is subject to physician variability.

While artificial intelligence deep learning methods have been applied to lung tumor detection and segmentation, prior studies have been limited by small datasets, reliance on manual inputs, and a focus on segmenting single lung tumors, highlighting the need for models capable of robust and automated tumor delineation across diverse clinical settings.

In this study, a unique, large-scale dataset consisting of routinely collected pre-radiation treatment CT simulation scans and their associated clinical 3D segmentations was used to develop a near-expert-level lung tumor detection and segmentation model. The primary aim was to develop a model that accurately identifies and segments lung tumors on CT scans from different medical centers.

"To the best of our knowledge, our training dataset is the largest collection of CT scans and clinical tumor segmentations reported in the literature for constructing a lung tumor detection and segmentation model," said the study’s lead author, Mehr Kashyap, M.D., resident physician in the Department of Medicine at Stanford University School of Medicine in Stanford, California.

For the retrospective study, an ensemble 3D U-Net deep learning model was trained for lung tumor detection and segmentation using 1,504 CT scans with 1,828 segmented lung tumors. The model was then tested on 150 CT scans. Model-predicted tumor volumes were compared with physician-delineated volumes. Performance metrics included sensitivity, specificity, false positive rate and Dice similarity coefficient (DSC). DSC calculates the similarity between two sets of data by comparing the overlap between them. A value of 0 represents no overlap while a value of 1 represents perfect overlap. The model segmentations were compared to those from all three physician segmentations to generate the model-physician DSC values for each pairing.

The model achieved 92% sensitivity (92/100) and 82% specificity (41/50) in detecting lung tumors on the combined 150-CT scan test set.

For a subset of 100 CT scans with a single lung tumor each, the median model-physician and physician-physician segmentation DSCs were 0.77 and 0.80, respectively. Segmentation time was shorter for the model than for physicians.

Dr. Kashyap believes that the use of a 3D U-Net architecture in developing the model provides an advantage over approaches using a 2D architecture.

"By capturing rich interslice information, our 3D model is theoretically capable of identifying smaller lesions that 2D models may be unable to distinguish from structures such as blood vessels and airways," he said.

One limitation of the model was its tendency to underestimate tumor volume, resulting in poorer performance on very large tumors. Because of this, Dr. Kashyap cautions that the model should be implemented in a physician-supervised workflow, allowing clinicians to identify and discard incorrectly identified lesions and lower-quality segmentations.

The researchers suggest that future research should focus on applying the model to estimate total lung tumor burden and evaluate treatment response over time, comparing it to existing methods. They also recommend assessing the model’s ability to predict clinical outcomes on the basis of estimated tumor burden, particularly when combined with other prognostic models using diverse clinical data.

"Our study represents an important step toward automating lung tumor identification and segmentation," Dr. Kashyap said. "This approach could have wide-ranging implications, including its incorporation in automated treatment planning, tumor burden quantification, treatment response assessment and other radiomic applications."

Kashyap M, Wang X, Panjwani N, Hasan M, Zhang Q, Huang C, Bush K, Chin A, Vitzthum LK, Dong P, Zaky S, Loo BW, Diehn M, Xing L, Li R, Gensheimer MF.
Automated Deep Learning-Based Detection and Segmentation of Lung Tumors at CT.
Radiology. 2025 Jan;314(1):e233029. doi: 10.1148/radiol.233029

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...