AI Improves Personalized Cancer Treatment

Personalized medicine aims to tailor treatments to individual patients. Until now, this has been done using a small number of parameters to predict the course of a disease. However, these few parameters are often not enough to understand the complexity of diseases such as cancer. A team of researchers from the Faculty of Medicine at the University of Duisburg-Essen (UDE), LMU Munich, and the Berlin Institute for the Foundations of Learning and Data (BIFOLD) at TU Berlin has developed a new approach to this problem using artificial intelligence (AI).

Based on the smart hospital infrastructure at University Hospital Essen, the researchers have integrated data from different modalities - medical history, laboratory values, imaging, and genetic analyses – to support clinical decision-making. "Although large amounts of clinical data are available in modern medicine, the promise of truly personalized medicine often remains unfulfilled," says Prof. Jens Kleesiek from the Institute for Artificial Intelligence in Medicine (IKIM) at University Hospital Essen and the Cancer Research Center Cologne Essen (CCCE). Oncological clinical practice currently uses rather rigid assessment systems, such as the classification of cancer stages, which take little account of individual differences such as sex, nutritional status, or comorbidities. "Modern AI technologies, in particular explainable artificial intelligence (xAI), can be used to decipher these complex interrelationships and personalize cancer medicine to a much greater extent," says Prof. Frederick Klauschen, Director of the Institute of Pathology at LMU and research group leader at BIFOLD, where this approach was developed together with Prof. Klaus-Robert Müller.

For the recent study published in Nature Cancer, the AI was trained with data from more than 15,000 patients with a total of 38 different solid tumors. The interaction of 350 parameters was examined, including clinical data, laboratory values, data from imaging procedures, and genetic tumor profiles. "We identified key factors that account for the majority of the decision-making processes in the neural network, as well as a large number of prognostically relevant interactions between the parameters," explains Dr. Julius Keyl, Clinician Scientist at the Institute for Artificial Intelligence in Medicine (IKIM).

The AI model was then successfully tested on the data from over 3,000 lung cancer patients to validate the identified interactions. The AI combines the data and calculates an overall prognosis for each individual patient. As an explainable AI, the model makes its decisions transparent to clinicians by showing how each parameter contributed to the prognosis. "Our results show the potential of artificial intelligence to look at clinical data not in isolation but in context, to re-evaluate them, and thus to enable personalized, data-driven cancer therapy," says Dr. Philipp Keyl from LMU. An AI method like this could also be used in emergency cases where it is vital to be able to assess diagnostic parameters in their entirety as quickly as possible. The researchers also aim to uncover complex cross-cancer interrelationships, which have remained undetected thus far using conventional statistical methods. "At the National Center for Tumor Diseases (NCT), together with other oncological networks such as the Bavarian Center for Cancer Research (BZKF), we have the ideal conditions to take the next step: proving the real patient benefit of our technology in clinical trials," adds Prof. Martin Schuler, Managing Director of the NCT West site and Head of the Department of Medical Oncology at University Hospital Essen.

Keyl J, Keyl P, Montavon G, Hosch R, Brehmer A, Mochmann L, Jurmeister P, Dernbach G, Kim M, Koitka S, Bauer S, Bechrakis N, Forsting M, Führer-Sakel D, Glas M, Grünwald V, Hadaschik B, Haubold J, Herrmann K, Kasper S, Kimmig R, Lang S, Rassaf T, Roesch A, Schadendorf D, Siveke JT, Stuschke M, Sure U, Totzeck M, Welt A, Wiesweg M, Baba HA, Nensa F, Egger J, Müller KR, Schuler M, Klauschen F, Kleesiek J.
Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence.
Nat Cancer. 2025 Jan 30. doi: 10.1038/s43018-024-00891-1

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...