AI Accelerates Discovery of Neurodevelopmental Disorder-Associated Genes

Researchers have developed an artificial intelligence (AI) approach that accelerates the identification of genes that contribute to neurodevelopmental conditions such as autism spectrum disorder, epilepsy and developmental delay. This new powerful computational tool can help fully characterize the genetic landscape of neurodevelopmental disorders, which is key to making accurate molecular diagnosis, elucidating disease mechanism and developing targeted therapies. The study appeared in the American Journal of Human Genetics.

"Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered," said first and co-corresponding author Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor College of Medicine and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital.

Typically, to discover new genes associated with a disease, researchers sequence the genomes of many individuals with the disorders and compare them to the genomes of people without the disorders. "We took a complementary approach," Dhindsa said. "We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders."

The researchers looked for patterns in gene expression measured at the single-cell level from the developing human brain. "We found that AI models trained solely on these expression data can robustly predict genes implicated in autism spectrum disorder, developmental delay and epilepsy. But we wanted to take this work a step further," Dhindsa said.

To enhance the models even further, the team incorporated more than 300 other biological features, including measures of how intolerant genes are to mutations, whether they interact with other known disease-associated genes and their functional roles in different biological pathways.

"These models have exceptionally high predictive value," Dhindsa said. "Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone. Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower ranking genes."

"We see these models as analytical tools that can validate genes that are beginning to emerge from sequencing studies but don’t yet have enough statistical proof of being involved in neurodevelopmental conditions," Dhindsa said. "We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility."

Dhindsa RS, Weido BA, Dhindsa JS, Shetty AJ, Sands CF, Petrovski S, Vitsios D, Zoghbi AW.
Genome-wide prediction of dominant and recessive neurodevelopmental disorder-associated genes.
Am J Hum Genet. 2025 Mar 6;112(3):693-708. doi: 10.1016/j.ajhg.2025.02.001

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...