AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network, this vision could soon become a reality.

Glaucoma is the leading cause of irreversible blindness in Japan and worldwide. Early detection is critical, as the disease progresses silently, slowly constricting one's peripheral field of vision. Patients often don't notice this loss of vision at first, which means that extensive and irreversible damage can occur before a patient even thinks about booking a doctor's appointment. As a result, many cases remain undiagnosed due to the limited availability of ophthalmologists and the challenges of conducting mass screenings, particularly in resource-limited regions.

"This is why we developed a new, quick, portable testing method. It analyzes multiple key indicators of glaucoma, integrates the findings, and determines the presence of the disease with unprecedented precision," explains Professor Toru Nakazawa (Tohoku University).

The AI-GS was developed by a research team led by Nakazawa and Associate Professor Parmanand Sharma at the Graduate School of Medicine (Tohoku University).

The AI-GS network was tested on a dataset of 8,000 fundus images of the back of the eye (where glaucomatous damage occurs), achieving an impressive 93.52% sensitivity at 95% specificity - a level comparable to expert ophthalmologists. Unlike traditional AI models, this system excels at detecting early-stage glaucoma, even in cases where fundus abnormalities are subtle and difficult to recognize.

A major challenge in AI-driven healthcare is its lack of interpretability - the so-called "black box" problem where it's unclear what steps the AI made to come to a conclusion. AI-GS solves this by providing numerical values for each diagnostic feature, allowing ophthalmologists to understand and verify its decision-making process. This transparency enhances trust and facilitates seamless integration into clinical practice.

Another important aspect of making practical implementation as simple as possible was size. At just 110 MB, the AI-GS network is designed for portability and efficiency. It requires minimal computational power and delivers diagnostic results in under a second.

"AI-GS brings expert-level glaucoma screening to your pocket, complementing specialist evaluations," says Associate Professor Parmanand Sharma (Tohoku University), "It can be run on a mobile device and used in all sorts of public places because of its portability. You can run screenings at train stations or even remote regions that otherwise have limited access to ophthalmologists."

"This AI technology bridges a critical gap in glaucoma detection by making specialist-level diagnostics accessible to underserved communities," remarks Professor Nakazawa, "By enabling early detection on a large scale, we have the potential to prevent blindness for millions worldwide."

With its high accuracy, AI explainability, and lightweight design, the AI-GS network represents a major breakthrough in AI-driven ophthalmology, bringing glaucoma screening out of hospitals and into everyday life. Large-scale implementation of this system could revolutionize glaucoma care, ensuring that no patient is left undiagnosed due to a lack of access to specialists.

Sharma P, Takahashi N, Ninomiya T, Sato M, Miya T, Tsuda S, Nakazawa T.
A hybrid multi model artificial intelligence approach for glaucoma screening using fundus images.
NPJ Digit Med. 2025 Feb 27;8(1):130. doi: 10.1038/s41746-025-01473-w

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...