Space Technology for TB Detection

In the week that saw 50 years since the beginning of the space race, UK researchers have underlined the relevance that space technologies can have for other areas with the announcement of new research on detecting tuberculosis (TB) using technologies developed for space missions.

The technology in question was a spectrometer developed for the European Space Agency's Rosetta comet-chaser and the Beagle 2 mission to Mars.

TB, caused by the Mycobacterium tuberculosis bacterium, is thought to kill two million people every year, mainly in developing countries. In countries such as these where resources are restricted, TB detection is usually carried out using a smear microscopy of sputum samples. This is not only a very labour-intensive process, but also has a low sensitivity.

Now a team of researchers has received funding to develop a portable mass spectrometer (an optical instrument used to measure the properties of light) for diagnosing TB.

"Smear microscopy is not a very accurate way of diagnosing TB and only detects a third of all positive cases," says project participant Dr Geraint Morgan of the Open University. "That means seven out of 10 patients will effectively need to get worse before they can be diagnosed and treated. Clearly we need a new solution to this problem."

"The thing with developing technology for space missions is that it forces you to push boundaries and think outside the box when you're looking for new solutions to challenging problems. Many of the technical challenges we have overcome in designing our space instruments are the same as we face with this issue," Dr Morgan explained.

Dr Morgan is leading the project with Professor Colin Pillinger, synonymous in the UK with the Beagle 2 mission to Mars, and Dr Liz Corbett from the London School of Hygiene and Tropical Medicine (LSHTM). Funding has come for the Wellcome Trust, a UK-based medical research charity.

Rosetta will be the first spacecraft to conduct scientific measurements on the surface of a comet. The Ptolemy instrument on board - a shoe-box-sized gas chromatograph mass spectrometer - will analyse small pieces of the comet's nucleus in order to identify what it is made from. This information should deepen our understanding of the make-up of the early solar system, as well as whether or not comets have ever been a source of water for life on Earth.

Dr Morgan and his team will now adapt this technology to create a spectrometer capable of detecting TB in sputum with greater sensitivity and speed than a smear microscopy. The process could also be automated, removing the need for skilled technicians and a specially equipped laboratory.

"Chemicals have their own unique 'signature'," says Dr Morgan. "The bacterium that causes TB has a special coating and it is the pattern of chemicals in this coating that the mass spectrometer will be searching for."

During the second year of the project, the device will be tested in Zimbabwe. According to the Global Fund, over 85,000 Zimbabweans had TB in 2003. The number of cases has rocketed over the last 20 years.

"We urgently need an accurate and cost-effective method of diagnosing TB," says Dr Corbett. "At the moment, because diagnosis is not accurate, people with TB may have to be seen up to 10 times before they can be started on TB treatment. They may be infectious throughout this period and, especially if they also have HIV, at considerable risk of dying before their diagnosis is made."

Professor Pillinger has praised the foresight involved in funding a project that brings together space research and health research. "It is very rewarding to see such vision paying off in clinical research," he said.

For more information on the Wellcome Trust, please visit:
http://www.wellcome.ac.uk

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...