CATRENE Programme to Succeed MEDEA+ as European Nanoelectronics R&D Champion

MEDEA+, the EUREKA pan-European Programme for advanced co-operative Research and Development in Microelectronics, today announced details of the new EUREKA programme called CATRENE (Cluster for Application and Technology Research in Europe on NanoElectronics) that will take up the challenge of increasing Europe's strength in micro- and nanoelectronics after the highly successful MEDEA+ programme reaches its conclusion in 2008. A public/private partnership aimed at ensuring the continued development of European expertise in semiconductor technology and applications, CATRENE will build on the success of MEDEA+ and the previous EUREKA programmes JESSI and MEDEA in fostering the continued development of a dynamic European ecosystem with the critical mass necessary to compete at a global level in high technology industries as these move into the era of nanoelectronics.

Since its inception in 2001, MEDEA+ has made significant contributions to establishing and maintaining European leadership in fields ranging from smart card and image sensing technologies to automotive electronics. European IC companies have successfully developed three basic CMOS process generations in a time schedule in line with or even ahead of the global ITRS roadmap. Three European semiconductor companies are ranked amongst the world wide top ten and Europe's semiconductor industry has 10% of the world wide market. European champions with a strong global market position as wafer processing equipment suppliers, lithography tool and infrastructure suppliers as well as substrate and material suppliers have been added to the industrial landscape.

Like MEDEA+, CATRENE embraces all key actors in the value chain - including applications, technology, materials and equipment suppliers - as well as involving industrial companies of all sizes, universities and other research institutions, supported by Public Authorities. In this way CATRENE will benefit from the strong infrastructure for cross-border cooperation that has been developed by MEDEA+ and its predecessors.

An important feature of CATRENE is the concept of Lighthouse Projects, which address major socioeconomic needs such as transportation, healthcare, security, energy and entertainment through focussed R&D programmes. In the foreseeable future, the role of electronics and information systems will further increase as European society is faced with structural problems such as ageing of the population, exploding healthcare cost, transportation bottlenecks, rising energy costs and the need to increase productivity to be competitive on a worldwide basis. These societal challenges are also major opportunities for European industry and are designed to help European companies to address these new lead markets and to become worldwide market leaders. The "umbrella" lighthouse projects will serve as a focus for specific technology and applications development projects that address these challenges.

"For more than a decade, the EUREKA JESSI, MEDEA and MEDEA+ programmes have made it possi-ble for Europe's industry to reinforce its position in semiconductor process technology, manufac-turing and applications, and to become a key supplier to markets such as telecommunications, consumer electronics and automotive electronics", said Jozef Cornu, Chairman of MEDEA+ and designated Chairman of CATRENE. "Nanoelectronics will offer enormous opportunities to those who are the first to master and bring to market new technologies and applications and we believe that CATRENE will play a vital role in helping Europe's microelectronics industry to go from strength to strength."

While the JESSI, MEDEA and MEDEA+ programmes were divided into technology and applications sub-programmes, CATRENE recognises the increasing convergence of technology and applications. It will therefore focus on large identified application markets, deriving from these the roadmap of required technologies. Key technology goals include maintaining and increasing Europe's strength in IP (Intellectual Property) across the entire electronics supply chain and its leadership in lithography and Silicon-on-Insulator materials; ensuring that European companies are among the world leaders in the advanced semiconductor technologies that allow entire systems to be integrated in a single package; and strengthening European expertise in applying a deep knowledge of semiconductor process technology to efficient design for new electronics applications.

For more information on MEDEA+ and CATRENE visit http://www.medeaplus.org.

About MEDEA+
The MEDEA+ programme (2001-2008) comprised 77 projects involving 20,000 person-years and around 450 partner organisations from large companies (38 %), SMEs (37%), institutes and academia (25%). It delivered important innovations in key application areas such as automotive and traffic control, broadband communications, secure society, energy saving and healthcare.

About CATRENE
CATRENE is a four-year programme, starting 1 January 2008 and extendable by another four years. This is in line with the changing landscape of the semiconductor industry as well as the present view on technology evolution and the time span over which most of the major applications will develop. Resources required will be annually around 4,000 person-years, equalling about € 6 billion for the extended programme.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...