Optimising the Delivery of Stroke Care

The development of innovative ultrasound imaging equipment within the UMEDS project aims to provide for mobile stroke detection. When linked to advanced telemedicine systems, such diagnostic equipment could offer valuable information to guide prehospital thrombolysis.

In patients with acute cerebral ischemia, brain perfusion can be analysed by means of different diagnostic techniques, including computed and magnetic resonance tomography among others. However, it is the continuous development of non-invasive ultrasound techniques that has provided invaluable clinical applications for the assessment of intracranial arterial diseases.

Ultrasound can be utilised at the bedside for critically ill patients and provide timely information on arterial dissection and occlusion of brain arteries, as well as embolic occlusion. The concept of ultrasound perfusion analysis was not new; but the ability to estimate perfusion parameters with accuracy has only been made possible with recent developments in ultrasonographic imaging techniqes.

Localisation of specific biochemical epitopes with targeted contrast agents afforded the opportunity for imaging thrombus material in acute vessel occlusions. It also provides an effective means for the detection of micro-embolic signals. Moreover, software development at the INSERM laboratories in France has allowed rapid electronic transfer of data from the detector arrays and rapid image reconstruction for subsequent perfusion analysis.

Studies were undertaken to ascertain the optimal delivery mode of microbubbles with antibodies to activate platelets for targeted imaging, and the results were integrated into the image analysis software. The new software supports the automatic factor analysis of medical image sequences (FAMIS), along with the conventional parametric analysis of temporally arranged sequences.

To minimise respiratory motion artefacts in ultrasound contrast imaging sequences, and furthermore to improve parametric and FAMIS imaging from time sequences, dedicated software developed in MATLAB was added. The software package, readily available on a CD-ROM, can be implemented either step-by-step under the permanent supervision of the user or automatically both for clinical and pharmaceutical research applications.

For further information, please visit:

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...