Optimising the Delivery of Stroke Care

The development of innovative ultrasound imaging equipment within the UMEDS project aims to provide for mobile stroke detection. When linked to advanced telemedicine systems, such diagnostic equipment could offer valuable information to guide prehospital thrombolysis.

In patients with acute cerebral ischemia, brain perfusion can be analysed by means of different diagnostic techniques, including computed and magnetic resonance tomography among others. However, it is the continuous development of non-invasive ultrasound techniques that has provided invaluable clinical applications for the assessment of intracranial arterial diseases.

Ultrasound can be utilised at the bedside for critically ill patients and provide timely information on arterial dissection and occlusion of brain arteries, as well as embolic occlusion. The concept of ultrasound perfusion analysis was not new; but the ability to estimate perfusion parameters with accuracy has only been made possible with recent developments in ultrasonographic imaging techniqes.

Localisation of specific biochemical epitopes with targeted contrast agents afforded the opportunity for imaging thrombus material in acute vessel occlusions. It also provides an effective means for the detection of micro-embolic signals. Moreover, software development at the INSERM laboratories in France has allowed rapid electronic transfer of data from the detector arrays and rapid image reconstruction for subsequent perfusion analysis.

Studies were undertaken to ascertain the optimal delivery mode of microbubbles with antibodies to activate platelets for targeted imaging, and the results were integrated into the image analysis software. The new software supports the automatic factor analysis of medical image sequences (FAMIS), along with the conventional parametric analysis of temporally arranged sequences.

To minimise respiratory motion artefacts in ultrasound contrast imaging sequences, and furthermore to improve parametric and FAMIS imaging from time sequences, dedicated software developed in MATLAB was added. The software package, readily available on a CD-ROM, can be implemented either step-by-step under the permanent supervision of the user or automatically both for clinical and pharmaceutical research applications.

For further information, please visit:

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...