Siemens Healthineers Achieves Important Milestone in Quantifiable Tissue Analysis Using MR

Siemens HealthineersAt the ISMRM (International Society for Magnetic Resonance in Medicine) in Montreal, Canada, Siemens Healthineers is the first supplier in the world to offer magnetic resonance fingerprinting (MRF) as a product for tissue analysis in clinical neurological research. The MRF application is the result of an exclusive, multi-year research partnership with Case Western Reserve University and the University Hospitals in Cleveland, which aims to make MR measurements much more quantifiable and reproducible. Thanks to this approach, a reliable judgment will be possible as to whether tissue is healthy or how badly it is damaged. This is a further means by which Siemens Healthineers is paving the way to personalized treatment and precision medicine. The MRF application and the associated database will initially be made available for the 3-Tesla Magnetom Vida magnetic resonance imaging system. Corresponding software packages for other 3T scanners from Siemens Healthineers will follow.

"MRF represents a paradigm shift in MR image acquisition," says Arthur Kaindl, head of Magnetic Resonance at Siemens Healthineers. "We generate unique ‘fingerprints’ that reflect the properties of the scanned tissue, and so we can describe the target anatomy numerically instead of visually for the first time. This information forms the basis for machine-assisted analysis for tissue classification, and thus also personalized treatment programs. The data also offers excellent opportunities for utilization and further development of artificial intelligence and Deep Learning."

Jeffrey Sunshine, Chief Medical Information Officer at the Cleveland University Hospitals and interim Co-Chair of Radiology at Case Western Reserve University and the University Hospitals adds: "I firmly believe that MRF will revolutionize the world of MR imaging. MRF lets us perform reliable tissue analyses. For example, we can assist tumor staging in cancer cases, which can save the patient from undergoing a biopsy and thus a surgical intervention. At the same time, the fact that tissue analyses are comparable means we can perform reliable progress checks."

The MRF method

MRF measures signal evolutions within each recorded voxel. The parameters for image acquisition are pseudo-randomized in the process, and the changes in signal are recorded. An algorithm compares the acquired datasets against a previously established database and locates the entry that most closely matches the signal evolution in question. This information can be compared to the fingerprints used in forensic investigations. Just like fingerprints, evaluation is possible only with access to a database that’s as comprehensive as possible. The forensic database links the fingerprint, and its unique characteristics, with the person’s own features (name, height, eye color, etc.). Likewise, the MRF database contains T1 and T2 values and can later be complemented with other parameters like relative spin density, B0, and diffusion. The clinic can link this information to the data for the underlying tissue type (bone, healthy tissue, diseased tissue).

MR images provide excellent information for diagnostics. But the images can differ greatly depending on the system, patient, and user, and are limited in terms of reproducibility and comparability. Although it has previously been possible to obtain absolute measurements of individual tissue properties, like diffusion, fat and iron deposits, perfusion, and relaxation times, lengthy measurement times were necessary. The previous deficits are comprehensively addressed by the new MRF method.

Magnetic Resonance Fingerprinting is currently under development and not commercially available. It is not for sale. Its future availability cannot be guaranteed.

About Siemens Healthineers

Siemens Healthineers enables healthcare providers worldwide to increase value by empowering them on their journey towards expanding precision medicine, transforming care delivery, improving patient experience and digitalizing healthcare. A leader in medical technology, Siemens Healthineers is constantly innovating its portfolio of products and services in its core areas of diagnostic and therapeutic imaging and in laboratory diagnostics and molecular medicine. Siemens Healthineers is also actively developing its digital health services and enterprise services. In fiscal 2018, which ended on September 30, 2018, Siemens Healthineers generated revenue of €13.4 billion and adjusted profit of €2.3 billion and has about 50,000 employees worldwide.

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...