Siemens Healthineers Achieves Important Milestone in Quantifiable Tissue Analysis Using MR

Siemens HealthineersAt the ISMRM (International Society for Magnetic Resonance in Medicine) in Montreal, Canada, Siemens Healthineers is the first supplier in the world to offer magnetic resonance fingerprinting (MRF) as a product for tissue analysis in clinical neurological research. The MRF application is the result of an exclusive, multi-year research partnership with Case Western Reserve University and the University Hospitals in Cleveland, which aims to make MR measurements much more quantifiable and reproducible. Thanks to this approach, a reliable judgment will be possible as to whether tissue is healthy or how badly it is damaged. This is a further means by which Siemens Healthineers is paving the way to personalized treatment and precision medicine. The MRF application and the associated database will initially be made available for the 3-Tesla Magnetom Vida magnetic resonance imaging system. Corresponding software packages for other 3T scanners from Siemens Healthineers will follow.

"MRF represents a paradigm shift in MR image acquisition," says Arthur Kaindl, head of Magnetic Resonance at Siemens Healthineers. "We generate unique ‘fingerprints’ that reflect the properties of the scanned tissue, and so we can describe the target anatomy numerically instead of visually for the first time. This information forms the basis for machine-assisted analysis for tissue classification, and thus also personalized treatment programs. The data also offers excellent opportunities for utilization and further development of artificial intelligence and Deep Learning."

Jeffrey Sunshine, Chief Medical Information Officer at the Cleveland University Hospitals and interim Co-Chair of Radiology at Case Western Reserve University and the University Hospitals adds: "I firmly believe that MRF will revolutionize the world of MR imaging. MRF lets us perform reliable tissue analyses. For example, we can assist tumor staging in cancer cases, which can save the patient from undergoing a biopsy and thus a surgical intervention. At the same time, the fact that tissue analyses are comparable means we can perform reliable progress checks."

The MRF method

MRF measures signal evolutions within each recorded voxel. The parameters for image acquisition are pseudo-randomized in the process, and the changes in signal are recorded. An algorithm compares the acquired datasets against a previously established database and locates the entry that most closely matches the signal evolution in question. This information can be compared to the fingerprints used in forensic investigations. Just like fingerprints, evaluation is possible only with access to a database that’s as comprehensive as possible. The forensic database links the fingerprint, and its unique characteristics, with the person’s own features (name, height, eye color, etc.). Likewise, the MRF database contains T1 and T2 values and can later be complemented with other parameters like relative spin density, B0, and diffusion. The clinic can link this information to the data for the underlying tissue type (bone, healthy tissue, diseased tissue).

MR images provide excellent information for diagnostics. But the images can differ greatly depending on the system, patient, and user, and are limited in terms of reproducibility and comparability. Although it has previously been possible to obtain absolute measurements of individual tissue properties, like diffusion, fat and iron deposits, perfusion, and relaxation times, lengthy measurement times were necessary. The previous deficits are comprehensively addressed by the new MRF method.

Magnetic Resonance Fingerprinting is currently under development and not commercially available. It is not for sale. Its future availability cannot be guaranteed.

About Siemens Healthineers

Siemens Healthineers enables healthcare providers worldwide to increase value by empowering them on their journey towards expanding precision medicine, transforming care delivery, improving patient experience and digitalizing healthcare. A leader in medical technology, Siemens Healthineers is constantly innovating its portfolio of products and services in its core areas of diagnostic and therapeutic imaging and in laboratory diagnostics and molecular medicine. Siemens Healthineers is also actively developing its digital health services and enterprise services. In fiscal 2018, which ended on September 30, 2018, Siemens Healthineers generated revenue of €13.4 billion and adjusted profit of €2.3 billion and has about 50,000 employees worldwide.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...