Europeans Welcome Use of Robots

More than two-thirds of EU citizens (70%) have a positive view of robots, according to a new EU Eurobarometer survey; the majority agree that robots "are necessary as they can do jobs that are too hard or too dangerous for people" (88%) and that "they are a good thing for society because they help people" (76%).

The survey found that people who have some personal experience with robots are more likely to have a positive view (88%) than the wide majority who lack this experience (68%). The more interested in science people are, the more positive they tend to be towards robots (86% of EU citizens who are very interested in science and technology hold positive views about robots, compared to only 42% of those who are not interested).

EU citizens have clear views about the areas where robots should operate: they should work in areas that are too difficult or too dangerous for humans, like space exploration (52% consider this a priority), manufacturing (50%), military and security uses (41%) and search and rescue tasks (41%).

European Commission support for robotics research
Robots are widely regarded as essential for Europe's industrial competitiveness. But there are a multiplicity of new applications where robots could also contribute to the well-being of people, including the most vulnerable members of our society. Capitalising on this potential will require open debate and investment.

Boosting research and innovation in robotics is therefore one of the priorities of the Digital Agenda for Europe. For the period 2007-2013, the European Commission has spent about €600 million in robotics research; from 2013 to 2020, €14 billion are earmarked to support key enabling & industrial technologies such as robotics. Next week, the Commission will join leading European companies to commit to pool research and innovation efforts and prepare for a Public-Private Partnership in Robotics.

Robots in healthcare
Robots are increasingly being deployed in healthcare to help stroke patients recuperate, or to help surgeons carry out delicate surgical manoeuvres.

  • The INSEWING project has produced a robot capable of repairing surgical incisions made during the treatmernt of colon cancer. It should increase the life expectancy of patients suffering complications linked to the surgical stapling of wounds. Such a robot could reduce time spent in hospital, reduce treatment costs and help achieve a speedier recovery. The prototype is completed and currently applying for a patent.

Robots in education and care
A number of EU-funded projects show clearly how robotics can increase the quality of life for some vulnerable groups.

  • The RADHAR project is building a system that can develop better wheelchairs for children suffering from multiple sclerosis, cerebral palsy or a variety of other syndromes, such as autism and hereditary muscles diseases. The project will augment the steering signals of the user with information from the environmental perception of the robot to ensure safe navigation with a greater level of autonomy for the child.
  • The BRACOG project is developing a robotic arm to help sufferers of strokes and traumatic injuries perform everyday tasks by using the user's own brain activity to control the arm as it grasps and manipulates common objects. The project could eventually enable patients with severe upper limb motor handicaps to perform essential motor tasks, such as eating and drinking autonomously.
  • Children with autism may face tactile interaction difficulties that severely hamper their social interaction. In the Roboskin project, a robot was equipped with a robotic skin of new sensory technologies that provide feedback according to the style of interaction and strength of the touch. This encourages certain tactile behaviours in children living with autism, helping them further develop their body awareness and sense of self.

Robots undertaking dangerous tasks

  • European Research is helping to develop robots which can replace humans in dangerous situations or carry out potentially lethal tasks. One example is HYFLAM, a dexterous robot hand for use in bacteriological or chemical laboratories. HYFLAM can perform a set of complex - and occasionally dangerous- manipulations operations, for example helping microbiologists carry out risky tests on their samples. Working with some of the deadliest microorganisms on the planet, this robot can carry out a highly-skilled job in laboratories where accidents can be catastrophic.

For further information, please visit:
Eurobarometer survey "Public attitudes towards Robots" and Country Sheets

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...