Europeans Welcome Use of Robots

More than two-thirds of EU citizens (70%) have a positive view of robots, according to a new EU Eurobarometer survey; the majority agree that robots "are necessary as they can do jobs that are too hard or too dangerous for people" (88%) and that "they are a good thing for society because they help people" (76%).

The survey found that people who have some personal experience with robots are more likely to have a positive view (88%) than the wide majority who lack this experience (68%). The more interested in science people are, the more positive they tend to be towards robots (86% of EU citizens who are very interested in science and technology hold positive views about robots, compared to only 42% of those who are not interested).

EU citizens have clear views about the areas where robots should operate: they should work in areas that are too difficult or too dangerous for humans, like space exploration (52% consider this a priority), manufacturing (50%), military and security uses (41%) and search and rescue tasks (41%).

European Commission support for robotics research
Robots are widely regarded as essential for Europe's industrial competitiveness. But there are a multiplicity of new applications where robots could also contribute to the well-being of people, including the most vulnerable members of our society. Capitalising on this potential will require open debate and investment.

Boosting research and innovation in robotics is therefore one of the priorities of the Digital Agenda for Europe. For the period 2007-2013, the European Commission has spent about €600 million in robotics research; from 2013 to 2020, €14 billion are earmarked to support key enabling & industrial technologies such as robotics. Next week, the Commission will join leading European companies to commit to pool research and innovation efforts and prepare for a Public-Private Partnership in Robotics.

Robots in healthcare
Robots are increasingly being deployed in healthcare to help stroke patients recuperate, or to help surgeons carry out delicate surgical manoeuvres.

  • The INSEWING project has produced a robot capable of repairing surgical incisions made during the treatmernt of colon cancer. It should increase the life expectancy of patients suffering complications linked to the surgical stapling of wounds. Such a robot could reduce time spent in hospital, reduce treatment costs and help achieve a speedier recovery. The prototype is completed and currently applying for a patent.

Robots in education and care
A number of EU-funded projects show clearly how robotics can increase the quality of life for some vulnerable groups.

  • The RADHAR project is building a system that can develop better wheelchairs for children suffering from multiple sclerosis, cerebral palsy or a variety of other syndromes, such as autism and hereditary muscles diseases. The project will augment the steering signals of the user with information from the environmental perception of the robot to ensure safe navigation with a greater level of autonomy for the child.
  • The BRACOG project is developing a robotic arm to help sufferers of strokes and traumatic injuries perform everyday tasks by using the user's own brain activity to control the arm as it grasps and manipulates common objects. The project could eventually enable patients with severe upper limb motor handicaps to perform essential motor tasks, such as eating and drinking autonomously.
  • Children with autism may face tactile interaction difficulties that severely hamper their social interaction. In the Roboskin project, a robot was equipped with a robotic skin of new sensory technologies that provide feedback according to the style of interaction and strength of the touch. This encourages certain tactile behaviours in children living with autism, helping them further develop their body awareness and sense of self.

Robots undertaking dangerous tasks

  • European Research is helping to develop robots which can replace humans in dangerous situations or carry out potentially lethal tasks. One example is HYFLAM, a dexterous robot hand for use in bacteriological or chemical laboratories. HYFLAM can perform a set of complex - and occasionally dangerous- manipulations operations, for example helping microbiologists carry out risky tests on their samples. Working with some of the deadliest microorganisms on the planet, this robot can carry out a highly-skilled job in laboratories where accidents can be catastrophic.

For further information, please visit:
Eurobarometer survey "Public attitudes towards Robots" and Country Sheets

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...