Computer Simulator to Manage Hospital Emergencies

Researchers of the group High Performance Computing for Efficient Applications and Simulation (HPC4EAS) of the Department of Computer Architecture and Operating Systems of the Universitat Autònoma de Barcelona (UAB), in collaboration with the team at the Emergency Services Unit at Hospital de Sabadell (Parc Taulí Healthcare Corporation), have developed an advanced computer simulator to help in decision-making processes (DSS, or decision support system) which could aid emergency service units in their operations management.

The model was designed based on real data provided by the Parc Taulí Healthcare Corporation, using modelling and simulation techniques adapted to each individual, and which require the application of high performance computing. The system analyses the reaction of the emergency unit when faced with different scenarios and optimises the resources available.

The simulator was created by lecturer Emilio Luque, main researcher of the project; UAB PhD students Manel Taboada, lecturer at the Gimbernat School of Computer Science - a UAB-affiliated centre - and Eduardo Cabrera, trainee researcher; and María Luisa Iglesias and Francisco Epelde, heads of the Emergency Services Unit of Parc Taulí.

"Planning the use of resources available to an emergency unit staff is a complex task, since the arrival of patients varies greatly, not only during the day, but depending on the week, month, etc. That is why those in charge find it useful to have computer tools which simulate the effects of special situations, such as seasonal increases, epidemics, and so forth, in order to be able to identify the best combination of resources for each moment," Emilio Luque explains.

The most outstanding part of the simulator is the precise representation of the behaviour of individuals who were identified and their interactions. "Several tries have been made to simulate emergency services, but using other types of methodologies which did not gather enough data on a system depending on human behaviour, which is based on the relation of individuals who act more or less independently in the decisions they make. In addition to in depth knowledge of the methodology, there is also the need to have direct access to the information and data provided by the emergency services, with the aim of verifying and validating the work carried out. This data is very relevant and was not included in other simulators," Manel Taboada states.

Researchers defined different types of patients according to their emergency level, and doctors, nursing teams, and admissions staff according to different levels of experience. This permitted studying the duration of processes such as the triage (when the emergency level is determined), the number and type of patients arriving at each moment, the waiting period for each stage or phase of the service, costs associated with each process, the amount of staff needed to determine a type of assistance and, in general, all other quantifiable variables. The system not only helps to make decisions in real time, it also can help by making forecasts and improving the functioning of the service.

The complexity level of the model is very elevated: it takes into account the elements relevant for the functioning of emergency services, such as computer systems, support services for clinic diagnoses (laboratories, X-rays, etc.) and consultations made with specialists. This allows testing service resistance in case any of these elements fail.

Another advantage of the new system compared to previous models is its adaptability to all types of emergency services. "Since it is based on a very complex service as the one we have here at Parc Taulí, it is quite easy to adapt it to other hospitals through a 'tuning' process where the data is redefined," Emilio Luque explains.

For now, the simulator has been used with level 4 and 5 patients - non-urgent patients according to the definition of the Spanish Triage System (SET). These represent almost 60% of total patients being attended, based on admission zones, triage and diagnosis-treatment processes. The version currently being developed by researchers is taking into account more severely affected patients (SET levels 1, 2 and 3). In the near future, researchers aim to apply the system to other medical specialties, such as surgical areas and paediatrics.

The implementation was carried out using the Netlogo environment simulator, of demonstrated reliability and commonly used in the application of Individual-Based Modelling and Simulation Techniques in the field of social sciences.

The work conducted by UAB researchers won first prize this past June in the 2012 International Computer Science Conference.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...