New App can Help Doctors Predict Risk of Preterm Birth

A new app called QUiPP could help doctors to better identify women at risk of giving birth prematurely. The app, developed at King's College London, was tested in two studies of high-risk women being monitored at ante-natal clinics. Worldwide 15 million babies are born preterm (before 37 weeks) each year and over a million of these die of prematurity-related complications. A number of factors are used to determine if a woman is at risk of giving birth prematurely, including a history of preterm births or late miscarriages. Two further factors which doctors can consider are the length of cervix and levels of a biomarker found in vaginal fluid known as fetal fibronectin, which are typically tested from 23 weeks. The investigators have further developed the fetal fibronectin test to be accurately used from the first half of pregnancy.

The app developed at King's uses an algorithm which combines the gestation of previous pregnancies and the length of the cervix with levels of fetal fibronectin to classify a woman's risk. The first study focused on women deemed to be a high risk of preterm birth, usually because of a previous early pregnancy, despite not showing any symptoms. The second study predicted the likelihood of early delivery in a group of women showing symptoms of early labour which often doesn't progress to real labour.

In the first study, published in the journal Ultrasound in Obstetrics & Gynecology, researchers collected data from 1,249 women at high risk for pre-term birth attending pre-term surveillance clinics. The model was developed on the first 624 consecutive women and validated on the subsequent 625. The estimated probability of delivery before 30, 34 or 37 weeks' gestation and within two or four weeks of testing for fetal fibronectin was calculated for each patient and analyzed as a predictive test for the actual occurrence of each event.

In the second study, also published in the journal Ultrasound in Obstetrics & Gynecology, data from 382 high-risk women was collected. The model was developed on the first 190 women and validated on the remaining 192. Probabilities of delivering early were estimated as above.

In both studies, the app was found to perform well as a predictive tool, and far better than each component (previous pregnancy, cervical length or fetal fibronectin) taken alone.

The authors conclude that the app can be used by clinicians to improve the estimation of the probability of premature delivery (before 34 weeks' gestation or within two weeks of the fetal fibronectin test) and to potentially tailor clinical management decisions.

However, further work is needed to clinically evaluate the model in practice, and to ascertain whether interventions improve the pregnancy outcome for women identified as high risk by the app.

Professor Andrew Shennan, lead author who is Professor of Obstetrics at King's College London and consultant obstetrician at Guy's and St Thomas' NHS Foundation Trust, said:

"Despite advances in prenatal care the rate of preterm birth has never been higher in recent years, including in the US and UK, so doctors need reliable ways of predicting whether a woman is at risk of giving birth early. It can be difficult to accurately assess a woman's risk, given that many women who show symptoms of preterm labour do not go on to deliver early.

"The more accurately we can predict her risk, the better we can manage a woman's pregnancy to ensure the safest possible birth for her and her baby, only intervening when necessary to admit these 'higher risk' women to hospital, prescribe steroids or offer other treatments to try to prevent an early birth."

QUiPP is available to download for free from the Apple store.

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...