Researcher Engineers a Cutting-Edge Solution for Radiologists and other Medical Staff

Some 2 billion X-rays are performed around the world every year. But the average radiology clinic is understaffed. Radiologists are burdened with a growing workload, allowing little time to comprehensively evaluate images - leading to misdiagnoses and more serious consequences.

Now a Tel Aviv University lab is engineering practical solutions to meet the demands of radiologists. Prof. Hayit Greenspan's Medical Image Processing Lab in the Department of Biomedical Engineering in the TAU Faculty of Engineering has developed a wide variety of tools to facilitate computer-assisted diagnosis of X-rays, CTs and MRIs, freeing radiologists to attend to complex cases that require their full attention and skills.

"There is a shortage of radiologists, and their workload continues to grow. This means that some X-rays are never read or are only read following a long, life-endangering delay," said Prof. Greenspan. "Our goal is to use computer-assisted 'Deep Learning' technologies to differentiate between healthy and non-healthy patients, and to categorize all pathologies present in a single image through an efficient and robust framework that can be adapted to a real clinical setting."

"Deep learning" for accurate diagnosis
Prof. Greenspan discussed her lab's plan to implement "Deep Learning," a new area of Machine Learning research that harnesses artificial intelligence for various scientific fields, at the Israeli Symposium on Computational Radiology held at TAU last December. Her goal is to use Deep Learning to develop diagnostic tools for the automated detection and labelling of pathologies in radiographic images.

Prof. Greenspan's lab is one of only a few labs in the world dedicated to the application of Deep Learning in medicine. She and her team have already developed the technology to support automated chest X-ray pathology identification using Deep Learning, liver lesion detection, MRI lesion analysis and other tasks.

"We have developed tools to support decision-making in radiology with computer vision and machine learning algorithms. This will help radiologists make more accurate, more quantitative and more objective decisions," said Prof. Greenspan. "This is especially crucial when it comes to initial screenings. Such systems can improve accuracy and efficiency in both basic and more advanced radiology departments around the world."

Prof. Greenspan is also exploring the use of "transfer learning" in her research on the medical applications of Deep Learning. "Crowdsourcing was essential for the application of Deep Learning on general image searches such as Google search," said Prof. Greenspan. "But when it comes to medical imaging, there are privacy issues and there's very little comprehensive data available at this point.

"In 'transfer learning,' we use networks originally trained on regular images to categorize medical images. The features and parameters that represent millions of general images provide a good signature for the analysis of medical images as well."

Prof. Greenspan's work is supported by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI) and the Israeli Finance Ministry, in collaboration with Sheba Medical Center. She is also head co-editor of a special issue on "Deep Learning in Medical Imaging," which will be published in the journal IEEE Transactions on Medical Imaging in May.

Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...