Hamlyn Centre Announces Grant from Bill & Melinda Gates Foundation for Development of Dietary Intake Monitoring Technology

The Hamlyn Centre at Imperial College London today announces the award of a grant from the Bill & Melinda Gates Foundation, to accelerate research into new integrated technology systems for accurately measuring dietary intake. The grant of $1.5M will fund key investigation projects until April 2020, supporting the research and development of passive dietary intake monitoring tools and wearables that can support nutritional studies in low and middle-income countries. The integrated system will be validated in rural and urban settings in Kenya and Ghana, with research conducted under the guidance of Principal Investigator Dr. Benny Lo in collaboration with Prof. Gary Frost.

To enable accurate measurement of individual food and nutrient intake in low and middle-income countries, this project will develop an integrated system for capturing dietary assessments, monitoring individual dietary intake via both wearable camera and fixed (wall or ceiling-mounted) camera technologies. There is currently no accurate measurement of dietary intake. All current methodologies of assessing food intake have inaccuracy rates of 30-70%, yet accurate assessment of individual nutritional intake is essential to determine true nutritional status, and the nutritional needs of a population - both crucial in order to monitor the effectiveness of public health interventions to maintain nutritional health. Moreover, existing dietary intake monitoring methods are recognised to be labour-intensive, expensive, and fail to report critical factors such as social hierarchy of food intake. This has represented a major weakness in nutritional science until now - and a significant problem for health policy planning - which this development programme is now aiming to resolve.

To accurately report individual food and nutritional intake automatically and pervasively, this project brings together a consortium of engineering and nutritional experts to develop new technological solutions and diagnostic tools to enable accurate measurement for the first time. New camera technologies - together with novel computer vision and artificial intelligent algorithms - will be developed, with the vision to provide the necessary tools for large-scale nutritional studies in these key regions. In particular, the project will address the major technological challenges in detecting eating episodes, identifying food types and contents, estimating the quantity consumed, miniaturising sensor design, converting intake into energy and micronutrients, and deducing individual food intake in communal eating.

Commenting on the grant award, Professor Guang-Zhong Yang PhD, FREng, Director and Co-founder of the Hamlyn Centre at Imperial College London said: "We are extremely grateful to the Gates Foundation for recognising the importance this research. This major grant will support the development of innovative new tools to aid nutritional health programmes in key regions of the world. This funding enables us to explore the potential for harnessing wearable and fixed camera technologies for the assessment of individual food intake, with the potential to improve the effectiveness of public health policy delivery on a global scale."

The Hamlyn Centre is part of the Institute of Global Health Innovation (IGHI), which is working towards improving health and reducing health inequalities in developed and developing countries. It aims to overcome global health challenges by harnessing Imperial College London’s interdisciplinary research strengths and its expertise in safe, effective and accessible technologies.

About The Hamlyn Centre

The Hamlyn Centre was established for developing safe, effective and accessible technologies that can reshape the future of healthcare for both developing and developed countries. Focusing on technological innovation, but with a strong emphasis on clinical translation and direct patient benefits with global impacts, the Centre is at the forefront of research in imaging, sensing and robotics for addressing global health challenges associated with demographic, environmental, social and economic changes.

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...