Amsterdam UMC to Use AI to Increase the Accessibility of Medical Imaging Technology

The demand for acquiring and interpreting medical images is increasing faster than number of medical experts required to operate the medical imaging device and interpret their output. This is leading to an increase in the expert workload and extending waiting lists. An Amsterdam UMC-led consortium wants to tackle this problem by making imaging technology more accessible. With the help of artificial intelligence, they want to enable less specialized experts to acquire and analyse medical images. To support them in this goal, the Dutch Research Council (NWO) has awarded the AI4AI project a grant of 6.1 million euros.

Medical images are mainly captured in the hospitals, using expensive imaging devices such as CT or MRI-scanners. Specialists are required operate these devices as well as analyse their output. "Our aim is to use artificial intelligence to develop technologies that allow the use of affordable and/or portable devices such as ultrasound and ultra-low-field MRI," says Amsterdam UMC Professor of Artificial Intelligence and Medical Imaging Ivana Išgum. Išgum is the coordinator of the national consortium implementing the AI4AI project. "Also, our aim is to allow the use of imaging devices by e.g. general practitioners, sonographers and specialist nurses to reduce the need for very highly specialized experts."

"AI technology can reduce the need for highly specialized experts for operation of medical devices and analysis of medical images, which has the potential to greatly reduce the pressure on personnel and the associated costs" says Išgum, who together with Professor Clarisa Sánchez, leads the interfaculty research group qurAI that focuses on the responsible development of AI in healthcare.

The increased demand for medical images means that the workload for radiologists and other specialists is increasing enormously. This can lead to burnout symptoms, which in turn affects both the sustainability of care and waiting lists. This means that patients might need to travel further to receive the necessary care. "With this project, we want to contribute to bringing medical imaging closer to patients' living environment and make it more accessible for patients. In addition, hospital care in developing countries may not always be accessible to everyone. There may also be fewer highly skilled experts available. We also hope to contribute to more accessible healthcare for people in these countries," says Išgum.

Amsterdam UMC Radiologist Nils Planken adds that many fellow radiologists and other medical specialists welcome the support of technology. "AI technology that can support the creation, interpretation and reporting of medical imaging studies has the potential to shorten waiting lists and reduce workload and perhaps also improve quality. The correct use of diagnostics outside the hospital has the potential to prevent patients from being sent to the hospital, or to sending patients to the hospital in an even more targeted way," says Planken.

AI4AI focuses on many diseases and specialties, such as analysis of stroke and brain tumours, visualization and interpretation of organ tissue perfusion in surgery, quantification of foetal biomarkers to spot abnormalities in the pregnancy, identification of patients requiring invasive coronary artery treatment, identification of patients with heart disease, improvement of the workflow in image-guided radiotherapy, referrals for urgent care, screening and triage of threatening visual disorders, selection of patients eligible for immunotherapy, and improvement of imaging workflow to assess orthopaedic implants.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...