AI Drives Development of Cancer Fighting Software

University of Houston researchers and their students are developing a new software technology, based on artificial intelligence, for advancing cell-based immunotherapy to treat cancer and other diseases.

CellChorus Inc., a spinoff from the University of Houston, is commercializing the UH-developed Time-lapse Imaging Microscopy In Nanowell Grids™ platform for dynamic single-cell analysis with label-free analysis. Now they've received a $2.5 million grant from the National Center for Advancing Translational Sciences of the National Institutes of Health to fast-track the development of an advanced "label-free" version of this technology in partnership with the University of Houston.

Badri Roysam, Hugh Roy and Lillie Cranz Cullen University Professor of Electrical and Computer Engineering at the University of Houston, is collaborating with Professor Navin Varadarajan on the project. Varadarjan is an M.D. Anderson Professor, Chemical and Biomolecular Engineering also at UH and co-founder of CellChorus.

"This is an opportunity to leverage artificial intelligence methods for advancing the life sciences," said Roysam. "We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases."

TIMING™ is a specialized tool for studying single cells over time. Because it is a video-array-based technology, it observes cell interactions and produces tens of thousands of videos. Analyzing these massive video arrays requires automated computer vision systems.

"By combining AI, microscale manufacturing, and advanced microscopy, the label-free TIMING platform will yield deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics," said Rebecca Berdeaux, chief scientific officer at CellChorus and co-Principal Investigator on the grant. "The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.

The goal of the grant, a Small Business Technology Transfer Fast-Track award, is to quantify the behavior of cells without the need to fluorescently stain them. Label-free analysis, or analysis without fluorescent dyes, allows scientists to watch cells in their natural state and gather important information about their movement, interactions and changes. It will also allow them to use selective fluorescent staining to observe new molecules of interest. This is useful in studying diseases like cancer or how cells react to treatments.

The label-free analysis is enabled by new artificial intelligence and machine learning models trained on tens of millions of images of cells and will be optimized for fast, high-throughput single-cell analysis by customers.

This grant is under Award Number 1R42TR005299. The content of this release is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Accelerates the Search for New Tuberc…

Tuberculosis is a serious global health threat that infected more than 10 million people in 2022. Spread through the air and into the lungs, the pathogen that causes "TB" can...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...