AI Drives Development of Cancer Fighting Software

University of Houston researchers and their students are developing a new software technology, based on artificial intelligence, for advancing cell-based immunotherapy to treat cancer and other diseases.

CellChorus Inc., a spinoff from the University of Houston, is commercializing the UH-developed Time-lapse Imaging Microscopy In Nanowell Grids™ platform for dynamic single-cell analysis with label-free analysis. Now they've received a $2.5 million grant from the National Center for Advancing Translational Sciences of the National Institutes of Health to fast-track the development of an advanced "label-free" version of this technology in partnership with the University of Houston.

Badri Roysam, Hugh Roy and Lillie Cranz Cullen University Professor of Electrical and Computer Engineering at the University of Houston, is collaborating with Professor Navin Varadarajan on the project. Varadarjan is an M.D. Anderson Professor, Chemical and Biomolecular Engineering also at UH and co-founder of CellChorus.

"This is an opportunity to leverage artificial intelligence methods for advancing the life sciences," said Roysam. "We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases."

TIMING™ is a specialized tool for studying single cells over time. Because it is a video-array-based technology, it observes cell interactions and produces tens of thousands of videos. Analyzing these massive video arrays requires automated computer vision systems.

"By combining AI, microscale manufacturing, and advanced microscopy, the label-free TIMING platform will yield deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics," said Rebecca Berdeaux, chief scientific officer at CellChorus and co-Principal Investigator on the grant. "The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.

The goal of the grant, a Small Business Technology Transfer Fast-Track award, is to quantify the behavior of cells without the need to fluorescently stain them. Label-free analysis, or analysis without fluorescent dyes, allows scientists to watch cells in their natural state and gather important information about their movement, interactions and changes. It will also allow them to use selective fluorescent staining to observe new molecules of interest. This is useful in studying diseases like cancer or how cells react to treatments.

The label-free analysis is enabled by new artificial intelligence and machine learning models trained on tens of millions of images of cells and will be optimized for fast, high-throughput single-cell analysis by customers.

This grant is under Award Number 1R42TR005299. The content of this release is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...