Philips Announces New Augmented-Reality Surgical Navigation Technology Designed for Image-Guided Spine, Cranial and Trauma Surgery

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a leader in integrated image-guided therapy solutions, today announced the development of an industry-first augmented-reality surgical navigation technology that is designed to help surgeons perform image-guided open and minimally-invasive spine surgery. Philips is a pioneer in hybrid operating room (hybrid OR) solutions to facilitate both surgical and minimally-invasive endovascular procedures, with over 750 hybrid ORs installed globally. The addition of this new augmented reality technology will further widen the scope of Philips hybrid OR solutions to other fast-growing areas of image-guided surgery including spine, cranial and trauma procedures.

Spine surgery was traditionally an 'open surgery' procedure, accessing the affected area via a large incision so that surgeons could physically see and touch the patient's spine in order to position implants such as pedicle screws. In recent years, however, there has been a definite shift to the use of minimally-invasive techniques, performed by manipulating surgical tools through small incisions in the patient's skin in order to minimize blood loss and soft tissue damage, and consequently reduce postoperative pain. Due to inherently reduced visibility of the spine during these procedures, surgeons have to rely on real-time imaging and navigation solutions to guide their surgical tools and implants. The same is true for minimally-invasive cranial surgery and surgery on complex trauma fractures.

Philips is developing a new augmented-reality surgical navigation technology, which will add additional capabilities to the company's low-dose X-ray system. The technology uses high-resolution optical cameras mounted on the flat panel X-ray detector to image the surface of the patient. It then combines the external view captured by the cameras and the internal 3D view of the patient acquired by the X-ray system to construct a 3D augmented-reality view of the patient's external and internal anatomy. This real-time 3D view of the patient's spine in relation to the incision sites in the skin aims to improve procedure planning, surgical tool navigation and implant accuracy, as well as reducing procedure times.

"This unique augmented-reality technology is an example of how we expand our capabilities with innovative solutions in growth areas such as spine, neuro and trauma surgery," said Ronald Tabaksblat, Business Leader Image-Guided Therapy Systems at Philips. "By teaming up with clinical innovation leaders, we continue to find ways to convert open surgery to minimally-invasive treatment to reduce post-operative pain and expedite recovery."

As part of a joint clinical research program, Philips hybrid ORs with this new capability will be installed in a network of ten clinical collaborators to advance the technology.

The results of the first pre-clinical study on the technology have been published in the prestigious SPINE journal, as a result of a collaboration between Philips, Karolinska University Hospital (Stockholm, Sweden) and the Cincinnati Children's Hospital Medical Center (Cincinnati, USA). The technology was shown to be significantly better with respect to overall accuracy, compared to pedicle screw placement without the aid of Philips' augmented-reality surgical navigation technology (85% vs 64%, p<0.05).

"This new technology allows us to intraoperatively make a high-resolution 3D image of the patient's spine, plan the optimal device path, and subsequently place pedicle screws using the system's fully-automatic augmented-reality navigation," said Dr. Skúlason of the Landspitali University Hospital, Reykjavik, Iceland. "We can also check the overall result in 3D in the OR without the need to move the patient to a CT scanner. And all this can be done without any radiation exposure to the surgeon and with minimal dose to the patient."

The technology was also recently presented at the North American Spine Society Annual Meeting in Boston by Dr. Adrian Elmi-Terander of Karolinska University Hospital, Sweden.

Today, Philips' commercial hybrid OR solutions are already being used for image-guided minimally-invasive surgery.

"Since we no longer do open spine surgery, we depend on imaging and image quality," commented Prof. Seekamp from the Universitätsklinikum Schleswig-Holstein in Kiel, Germany. "I had expected the operations to take a little longer in the hybrid OR, but in fact just the opposite is true."

Dr. Bemelman, trauma surgeon at the Elisabeth Hospital in Tilburg, the Netherlands, said: "We teamed up with vascular, neuro and orthopedic surgeons to create this multi-purpose OR to realize a high room utilization, provide state-of-the-art care and reduce the overall cost for the hospital."

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and enabling better outcomes across the health continuum from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips' health technology portfolio generated 2015 sales of EUR 16.8 billion and employs approximately 70,000 employees with sales and services in more than 100 countries.

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...