Philips and LabPON Plan to Create World's Largest Pathology Database of Annotated Tissue Images for Deep Learning

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA) and LabPON, the first clinical laboratory to transition to 100% histopathology digital diagnosis, have announced its plans to create a digital database of massive aggregated sets of annotated pathology images and big data utilizing Philips IntelliSite Pathology Solution (1). The database will provide pathologists with a wealth of clinical information for the development of image analytics algorithms for computational pathology and pathology education, while promoting research and discovery to develop new insights for disease assessment, including cancer.

Deep learning algorithms have the potential to improve the objectivity and efficiency in tumor tissue diagnosis. In recent years, 'deep learning' techniques for image analysis have quickly become the state of the art in computer vision and has surpassed human performance in a number of tasks (2). The challenge for executing deep learning techniques is having access to a database with sufficient high volume and high quality data from which to develop the algorithms. As one of the largest pathology laboratories in the Netherlands, LabPON will contribute its repository of approximately 300,000 whole slide images (WSI) they prospectively create each year to the database. This will contain de-identified datasets of annotated cases that are manually commented by the pathologist, and will comprise of a wide variety of tissue and disease types, as well as other pertinent diagnostic information to facilitate deep learning.

"Deep learning focuses on the development of advanced computer programs that automatically understand and digitally map tissue images in considerable detail: The more data available, the more refined the computer analysis will be," said Peter Hamilton, Group Leader Image Analytics at Philips Digital Pathology Solutions. "Together, LabPON and Philips have the competence and skills to realize this."

During a time where the pathologist shortage is mounting and cancer caseloads are increasing (3,4), the accurate diagnosis and grading of cancer has become increasingly complex, placing significant pressures on pathology services. Technologies such as computational pathology, could help pathologists with tools to work in the most efficient way possible.

"The role of the pathologist remains important by making the definitive diagnosis, which has a high impact on the patient's treatment. Software tools could help to relief part of the pathologists' work such as identifying tumor cells, counting mitotic cells or identifying perineural and vaso-invasive growth, as well carrying out measurements in a more accurate and precise way," said Alexi Baidoshvili, pathologist at LabPON. "This ultimately could help to improve the quality of diagnosis and make it more objective."

Next to the development of computational algorithms for diagnostic use, Philips intends to make available the database to research institutions and other partners through its translational research platform. This could enable selected parties to interrogate and combine massive datasets with the goal to discover new insights that ultimately could be translated into new personalized treatment options for patients.

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and enabling better outcomes across the health continuum from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips' health technology portfolio generated 2016 sales of EUR 17.4 billion and employs approximately 71,000 employees with sales and services in more than 100 countries.

1. Philips IntelliSite Pathology Solution is CE-IVD marked for use in primary diagnosis. In the United States, the Philips IntelliSite Pathology Solution pending review of a request for de novo classification.
2. Kaiming He Xiangyu et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. And LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521, no. 7553 (2015): 436-444.
3. The Royal College of Pathologists, https://www.rcpath.org/profession/workforce/workforce-planning.html, Accessed December 2016.
4. International Agency for Research on Cancer and Cancer Research UK. World Cancer Factsheet. Cancer Research UK, London, 2014.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...