Philips Introduces ClarifEye Augmented Reality Surgical Navigation to Advance Minimally-Invasive Spine Procedures

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today introduced ClarifEye Augmented Reality Surgical Navigation, an industry-first solution to advance minimally-invasive spine procedures in the Hybrid Operating Room, such as Philips' Hybrid Suite. By combining superb 2D and 3D visualizations at low X-ray dose [3] with 3D augmented reality (AR), the unique solution provides live intra-operative visual feedback to support accurate placement of pedicle screws during spinal fusion procedures. During such procedures, two or more vertebrae in the spine are permanently connected to help improve stability, correct a deformity, or reduce pain. The solution is fully integrated into the Philips Azurion image-guided therapy platform, supporting efficient workflow with intra-procedural navigation and verification for accurate screw placement and reducing the need for post-operative CT scans.

Spine conditions can have a significant impact on quality of life and well-being, with severe cases leaving patients unable to walk or even move from their beds. Treatment is typically complex and delicate, with surgeons required to take particular care to avoid fragile neurological and vascular structures that are close to the spine. By taking a minimally-invasive approach to spine surgery, patients can benefit from reduced postoperative pain, shortened hospital stays, reduced blood loss, and minimized soft tissue damage and scar tissue [4]. In addition, the intra-operative image guidance provided by solutions such as ClarifEye increases clinical accuracy, with patients subject to fewer revision surgeries compared to the current standard of care [1,2].

"In spine surgery, when you change your approach to a minimally invasive one, you also have to change the way you operate because you need another way to see inside the spine," said Dr. Pietro Scarone, neurosurgeon at Ente Ospedaliero Cantonale in Lugano, Switzerland. "With ClarifEye, the technology adapts to the needs of the surgeon, rather than the surgeon adapting to the requirements of the technology."

"Augmented reality surgical navigation helps us to place pedicle screws in positions where we actually couldn't or wouldn't do otherwise," said Dr. Adria Elmi-Terander, neurosurgeon in the department of Neurosurgery at the Karolinska University Hospital in Stockholm, Sweden.

Four high-resolution optical cameras are used to augment the surgical field with 3D cone-beam CT imaging, without the need for additional X-ray. The system combines the view of the surgical field with the internal 3D view of the patient to construct a 3D augmented-reality view of the patient's external and internal anatomy. Consistent tracking of the patient is ensured by video tracking of non-invasive markers placed on the skin. The system then visualizes the tip of the ClarifEye Needle as it is navigated along the planned path in the spine.

"Post-operative CT scans to check implant placements are no longer necessary," said Prof. Dr. Andreas Seekamp, Director of the Orthopaedic and Emergency Surgery clinic at the University Medical Center Schleswig-Holstein in Kiel, Germany. "As soon as surgery has been performed, we can be 100% sure that the implants are in place, thanks to the high quality of the intra-operative cone beam CT image and positioning flexibility of the system."

"Through co-creation with our clinical partners we've developed an innovative integrated solution that has the potential to improve outcomes and reduce costs for minimally invasive spine procedures," said Ronald Tabaksblat, General Manager Image Guided Therapy Systems at Philips. "With ClarifEye we are delivering on our strategy of expanding minimally invasive surgery into new clinical areas. The solution is built on the Philips next-generation Azurion image-guided therapy platform, enabling an unmatched level of integration and an intuitive experience for clinicians."

To learn more from physicians using advanced imaging and navigation solutions in spine surgeries, register here for the educational webinar taking place on Thursday, March 11th at 3:00pm CET.

For more information on Philips' approach to bringing AR to minimally-invasive spine surgery, read this Q&A with Ronald Tabaksblat.

ClarifEye Augmented Reality Surgical Navigation is CE marked and 510(k) pending. This material is not for distribution in the U.S.A.

About Royal Philips

Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and well-being, and enabling better outcomes across the health continuum – from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips generated 2020 sales of EUR 19.5 billion and employs approximately 82,000 employees with sales and services in more than 100 countries.

1. Dea N, Fisher CG, Batke J, Strelzow J, Mendelsohn D, Paquette SJ, Kwon BK, Boyd MD, Dvorak MFS, Street JT. Economic evaluation comparing intraoperative cone beam C T based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient level data cost effectiveness anal ysis. The Spine Journal (2016) 16: 23 31.
2. Fichtner J, Hofmann N, Rienmüller A, Buchmann N, Gempt J, Kirschke JS, Ringel F, Meyer B, Ryang Y M. Revision Rate of Misplaced Pedicle Screws of the Thoracolumbar SpineeComparison of Three Dimensional Fluoroscopy Navigation with Freehand Placement: A Systematic Analysis and Review of the Literature. World Neurosurg . (2018) 109: e24 e32.
3. Nachabe R, Strauss K, Schueler B, Bydon M. Radiation dose and image quality comparison during spine surgery with two different, intraoperative 3D imaging navigation systems, J Appl Clin Med Phys 2019 Feb; 20(2): 136-145.
4. Phan K, Rao PJ, Mobbs RJ. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: Systematic review and meta-analysis of comparative studies. Clinical neurology and neurosurgery. 2015. 135:85-92.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...